GRLIB Open-Source VHDL IP Library

Jiri Gaisler
Gaisler Research
jiri@gaisler.com
Introduction

- Significantly increased device density (ASIC & FPGA) will lead to larger number of new SOC designs
- For space applications, this can solve some of the component obsolescence problems
- However: an improved design methodology is needed to allow cost-efficient development of SOC systems
- For this purpose, Gaisler Research has developed a dual-use VHDL IP library for both commercial and space-based applications.
- This presentation will describe the concept of the IP library and provide details on some of its cores, including the LEON3 SPARC processor.
Common SOC design problems

- Merging of 3-party IP cores may cause several problems:
 - Harmonisation of interfaces (on-chip buses, irq ...)
 - Merging of synthesis and simulation scripts
 - Mapping of technology specific cells (RAM, pads)
 - Name space conflicts
 - Resolving CAD tool specific syntax
 - Licensing issues

- Problems for space applications
 - SEU hardening
 - Portability and long-term support
GRLIB design goals

- Efficient and unified SOC design IP library with:
 - Common interfaces
 - Unified synthesis and simulation scripts
 - Built-in portability
 - Multi-vendor support
 - CAD tool independent
 - Open and extensible format
 - SEU tolerance for space applications
GRLIB implementation overview

- Based around AMBA-2.0 on-chip bus (ARM)
- PCI-style plug & play support for AMBA configuration:
 - Device & vendor identification
 - Address and interrupt configuration
- Vendors and cores isolated through use of VHDL libraries
- Portability achieved through RAM and pad wrappers
- SEU tolerance by design (EDAC, parity, TMR)
- Automatic generation of synthesis and simulation scripts
- Supported tools: Mentor, Cadence, Synopsys, Synplify
- New cores, CAD tool scripts or tech wrappers easily added
GRLIB IP Cores

- 32-bit LEON3 SPARC processor
- GRFPU IEEE-754 floating-point unit
- 32-bit PCI bridge with FIFO and DMA
- Ethernet 10/100 Mbit Ethernet Controller
- AHB round-robin arbiter, APB bridge
- Utility cores: uart, timer, interrupt control, GPIO, ...
- Memory and pad wrappers for FPGAs and ASIC
- Under development:
 - CAN
 - MIL-STD-1553 (TBC)
Initial GRLIB Vendors

- Gaisler Research
 - Main infrastructure
 - LEON3, PCI, AMBA, SDRAM ctrl, tech-wrappers
- European Space Agency
 - Memory controller, UART
- Opencores
 - 10/100 Mbit Ethernet MAC
- Vendor and device ID assigned at no cost
Sample GRLIB SOC design

- SPARC CPU
- ETHER MAC
- UARTS
- TIMERS
- IOPORT
- AHB/ APB
- DEBUG LINK
- MEM CTRL
- PCI
- PROM
- SRAM/ SDRAM
- PCI
- RS232
- I/ O
- PHY
- AHB
- RS232
SOC design VHDL code

```
ahb0 : ahbctrl  -- AHB arbiter/multiplexer
port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso);

u0 : leon3s    -- LEON3 processor
generic map (ahbndx => i, fabtech => FABTECH, memtech => MEMTECH, isetsize => 1, dsetsize => 1)
  port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, leon3i(i), leon3o(i));

sd0 : mctrl    -- PROM/SRAM/SDRAM memory controller
generic map (ahbndx => 0, apbndx => 0, apbaddr => 0, sden => 1)
port map (rstn, clkm, memi, memo, ahbsi, ahbso(0), apbi, apbo(0), wpo, sdo);
end generate;

apb0 : apbmst   -- AHB/APB bridge
generic map (ahbndx => 1, memaddr => 16#800#)
port map (rstn, clkm, ahbsi, ahbso(1), apbi, apbo);

uart0 : apbuart -- UART 1
generic map (apbndx => 1, apbaddr => 1, irq => 2)
port map (rstn, clkm, apbi, apbo(1), u1i, u1o);

irqctrl0 : apbictrl -- interrupt controller
generic map (apbndx => 2, apbaddr => 2, ncpu => NCPU)
port map (rstn, clkm, apbi, apbo(2), irqi, irqo);

timer0 : gptimer  -- timer unit
generic map (apbndx => 3, apbaddr => 3, irq => 8)
port map (rstn, clkm, apbi, apbo(3), gpti, open);

pci0 : pci_target generic map (ahbndx => 1, device_id => 16#0210#, vendor_id => 16#16E3#)
port map (rstn, clkm, pciclk, pcii, pcio, ahbmi, ahbmo(1));

eth0 : eth_oc   -- Ethernet controller
generic map (mstndx => 2, slvndx => 5, ioaddr => 16#B00#, irq => 12)
port map (rst => rstn, clk => clkm, ahbsi => ahbsi, ahbso => ahbso(5),
ahbmi => ahbmi, ahbmo => ahbmo(NCPU+dbg+pci), ethi => ethi, etho => etho);
```
SOC design simulation

VSIM 1> run
LEON3 Demonstration design
GRLIB Version 1.0
Target technology: infered, memory library: infered
ahbctrl: AHB arbiter/multiplexer rev 1
ahbctrl: Common I/O area at Oxffff0000, 1 Mbyte
ahbctrl: Configuration area at Oxffffffff, 4 kbyte
ahbctrl: mst0: Gaisler Research Leon3 SPARC V8 Processor
ahbctrl: slv0: Gaisler Research PROM/SRAM/SDRAM Controller
ahbctrl: memory at 0x00000000, size 16 Mbyte, cacheable, prefetch
ahbctrl: memory at 0x40000000, size 16 Mbyte, cacheable, prefetch
ahbctrl: slv1: Gaisler Research AHB/APB Bridge
ahbctrl: memory at 0x80000000, size 16 Mbyte
apbmst: APB Bridge at 0x80000000 rev 1
apbmst: slv1: Gaisler Research Generic UART
apbmst: I/O ports at 0x80000100, size 256 byte
apbmst: slv2: Gaisler Research Multi-processor Interrupt Ctrl.
apbmst: I/O ports at 0x80000200, size 256 byte
apbmst: slv3: Gaisler Research Modular Timer Unit
apbmst: I/O ports at 0x80000300, size 256 byte
apbmst: slv7: Gaisler Research AHB Debug UART
apbmst: I/O ports at 0x80000700, size 256 byte
eth_oc5: Opencores 10/100 Mbit ethernet MAC, rev 0, irq 12
gptimer3: GR Timer Unit rev 1, 16-bit scaler, 2 32-bit timers, irq 8
apbictrl: Multi-processor Interrupt Controller rev 1, #cpu 2
apbuart1: Generic UART rev 1, irq 3
ahbuart7: AHB Debug UART rev 0
leon3_0: LEON3 SPARC V8 processor rev 0
leon3_0: icache 1*2 kbyte, dcache 1*1 kbyte

cpu0: 0x00000000 flush 0x0000
cpu0: 0x00000004 sethi %hi(0x00001000), %g1 [0x00001000]
cpu0: 0x00000008 or %g1, 0x00c0, %g1 [0x000010c0]
cpu0: 0x0000000c mov %g1, %psr
cpu0: 0x00000010 mov 0, %wim
cpu0: 0x00000014 mov 0, %tbr
cpu0: 0x00000018 mov 0, %y
LEON3 SPARC V8 Processor

- 7-stage pipeline, multi-processor support
- On-chip debug support unit with trace buffer
- SEU tolerance by design for space applications
- 250/400 MHz on 0.18/0.13 um, 250/400 MIPS
- Actel RTAX: 35 MHz
- All on-chip ram protected against SEU:
 - 136x32 bit register file: 4-bit parity and duplication
 - Cache rams use 4-bit parity and forced miss on error
 - No timing penalty, < 0.2% area overhead (on RTAX)
LEON3 Advanced floating-point unit

- High-performance single/double precision FPU (GRFPU)
 - IEEE-754, fully pipelined, 4 clock latency
 - ADD/ SUB/ MUL/ DIV/ SQRT/ COMP/ CONV
 - Dual execution units, parallel processor interface
 - Fault-tolerance against SEU effects
- 150/250 MHz, 150/250 MFLOPS on 0.18/0.13 μm, 100 K gates
- 40 MHz on Virtex-II, 9,000 LUTs
- Too large to fit on RTAX devices
- Can be used for DSP designs (custom or processor-based)
GRLIB Master/Target PCI

- Implements PCI 2.1 standard (32-bit, 33 MHz)
- Configurable FIFO depth
- DMA channel for independent block transfers
- 45/75 MHz, 9% area of RTAX2000S
- Full SEU protection through 4-bit parity and duplication
- No timing penalty, 4 RAM blocks overhead on RTAX
Synthesis results

<table>
<thead>
<tr>
<th>Core</th>
<th>Cells</th>
<th>% of RTAX2000</th>
<th>Mhz</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEON3 + caches</td>
<td>3650</td>
<td>15.00%</td>
<td>35</td>
</tr>
<tr>
<td>PCI, master/target + DMA</td>
<td>2750</td>
<td>9.00%</td>
<td>45/70</td>
</tr>
<tr>
<td>10/100 Mbit Ethernet MAC</td>
<td>2200</td>
<td>7.00%</td>
<td>65</td>
</tr>
<tr>
<td>PROM/SRAM controller</td>
<td>500</td>
<td>2.00%</td>
<td>75</td>
</tr>
<tr>
<td>SDRAM controller</td>
<td>550</td>
<td>2.00%</td>
<td>75</td>
</tr>
<tr>
<td>LEON3 SOC system with:</td>
<td>16250</td>
<td>51.00%</td>
<td>33</td>
</tr>
<tr>
<td>PCI, memory ctrl, timers, uarts,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irq ctrl, GPIO, ethernet MAC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LEON3 multi-processor support

- LEON processor core + caches = 3 mm² on 0.18 process
- Multi-processor system possible without area problems
- More than 4 cores not practical due to memory bandwidth
- Asymmetric configuration possible, e.g. 2 'main' processors with FPU/MMU + 1 I/O (DMA/Interrupt) processor
- Multi-processor DSU and interrupt controller available
- 4-processor system fits on XC2V3000 FPGA @ 80 MHz
- 4-processor system fits on a RTAX2000 @ 25 MHz
GRLIB Support tools

- GRMON plug&play debug monitor
 - Debug 'drivers' for each specific IP core
 - Modules allow IP vendors to provide own drivers
- GRSIM modular simulator
 - Modular, re-entrant simulator based on TSIM
 - Can simulate any number of buses, cores or cpu's
 - Vendor independent models
 - Allows hardware/software co-simulation!
LEON3/ SOC Development board

- Low-cost LEON CPCI FPGA development board available with XC2V6000, SDRAM, Flash, SRAM, 100-Mbit Ethernet
GRLIB availability

- Freely available in source code under GNU GPL
 - Valuable tool for academic research
 - Improves test-coverage due to large user-base
 - Allows early prototyping and try-before-buy
- Initial release June 2004
- Commercial licensing possible without restrictions
- The fault-tolerant version of the cores, and the FPU, are not initially released in open-source, but the long-term strategy is to release all cores under GPL.