
MAPLD International Conference, Washington, D.C, September 8-10, 2004. 

Le  223/BOF/MAPLD 2004 1 

Graphical Design Environment for Reconfigurable Processor  
Tu Le, Gregory Donohoe, David Buehler and Pen-Shu Yeh * 

Institute of Advanced Microelectronic ECE/CAMBR University of Idaho 
NASA GSFC code 567 * 

 
 
 
 

Abstract - The Field Programmable Processor Array (FPPA) is a new reconfigurable 
architecture developed by NASA/GSFC and the University of Idaho under ESTO funding.  When 
fabricated onto a processor chip, the FPPA architecture promises high-throughput, radiation-
tolerant, low-power data processing, for spacecraft instruments [1].  
   
The FPPA implements a synchronous fixed-point data flow computational model, which is not 
easily captured in procedural languages like C, but is easy to represent graphically. This 
motivates our Simulink-based design environment for the FPPA. In a process familiar to all 
Simulink users, the algorithm designer selects functional blocks from the menu, places them on a 
work screen, and connects them by drawing interconnect lines to create a FPPA data flow 
pipeline. A click of a button executes the data flow pipeline simulation, or translates the data 
flow pipeline to compiler codes, which can be used to configure the FPPA hardware.  This tool 
will simplify programming the FPPA, suppressing architectural details.   
 
 
 
 
I.  Introduction 
 
The Field Programmable Processor Array1 (FPPA) was developed by NASA/GSFC and the 
University of Idaho to provide high-throughput, radiation-tolerant, low-power data processing, 
for spacecraft instruments [1]. The FPPA architecture employs sixteen reconfigurable processing 
elements (PE) with programmable interconnection, which allow the designer to generate a data 
flow pipeline to tackle complex applications such as the Fast Fourier Transform (FFT) and Focal 
Plane Array Sensor Readout Correction [2], [4].  Mapping application to the FPPA entails a 
daunting amount of architectural detail.  This motives a graphical programming approach base 
on Simulink for the FPPA as a means to allow a design to be carried out entirely by the 
application programmer, without detailed knowledge of the FPPA architecture hardware or 
interface.   
 
The rest of the paper is organized as follows.  Section II, give an overview of the FPPA 
architecture followed by a discussion of the FPPA application development tools in section III.  
Section IV introduces the idea of graphical programming for a reconfigurable processor. The 
FPPA Simulink model, and Configuring the FPPA using the Simulink graphical design 
environment are explained in sections V and VI, respectively.  In section VII, we demonstrate 
two application examples. Sections VIII and IX present future work and conclusions. 

                                                 
1 Earlier versions of the FPPA were called the Reconfigurable Data Path Processor, or RDPP. 
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II. FPPA architecture 

 
The FPPA reconfigurable processor implements a synchronous integer data flow pipeline. The 
FPPA employs sixteen reconfigurable processing element s (PEs), programmable interconnect, four 
16-bit-wide bidirectional input/output (IO) ports and one 16-bit-wide dedicated output port, 
distributed on-board program memory, internal host interface and a micro-sequencer unit as well 
as the interface control signal unit [1].  Figure 1 shown a high level view of the FPPA architecture.   
 
Figure 2 shows a simple example of the FPPA synchronous data flow pipeline.  The five 16-bit 
IO ports provide a data interface to external devices and the 256x21 bit distributed on-board 
program memory synchronize the firing of the sixteen processing elements and five IO modules. 
In addition, sixteen interface control signals enable the FPPA to communicate with external 
peripherals. Up to five run-time program loops can be programmed into the micro-sequencer unit 
for looping through the program memory.  Each of the processing elements contains a 17-bit 
signed multiplier, a 32-bit arithmetic logic unit (ALU) with carry out, delay elements, data 
formatter, switching logic and the signal conditioning logic [1].  
 
The FPPA serves as an accelerator to a host computer via a byte-oriented communication 
protocol.  The FPPA architecture works in two phases: Configuration and Execution.  In the 
configuration phase, the processing elements are configured to a specific behavior, 
programmable interconnects configured to form a processing pipeline, and distributed on-board 
program memory for the PE and IO modules are loaded as well. The program memory specifies 
sequences of PE and IO module “firings” individually during the execution phase. (In dataflow 
terminology, the module “fires” when it latches new data and beings processing it.)  In the 
execution phase, the FPPA reads and processes the input stream of data and writes the result to 
the programmed output ports [1].  
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 

    Figure 1 : Glaze look at the FPPA architecture                                Figure 2: FPPA synchronous data flow pipeline 
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III. FPPA applications development tools  
 
The reconfigurable FPPA chip will be fabricated in a radiation tolerant .25 u CMOS process [3].  
Software support for applications development includes configuration and run-time compilers as 
well as a text-based stand-alone functional simulator [1].   This paper presents a graphical user 
interface (GUI) design entry tool for the FPPA based on Simulink. 
 
Using the text-based stand-alone functional simulator and the compilers, we set out to validate 
the FPPA architecture concept by the development of two challenge applications: Fourier 
Transform Hyper spectral Imager data conversion, and Focal Plane Array Sensor Readout 
Correction [2], [4], [5]. 
 
In developing these applications we found the FPPA to be quite flexible, but the text-based 
application development tools are complex to use.  Even for the simple four-tap finite impulse 
response (FIR) filter, an application programmer might take sometime to finish the job [6].   The 
FPPA application programmer must understand how to configure a PE to perform a task, how to 
connect multiple PEs together to form data flow pipeline, and how to program run-time behavior.  
The FPPA programming process requires a lot of book-keeping and can introduce human error.  
Also it is difficult to visualize the data flow pipeline through the coded texts.  The graphical 
programming environment simplifies the job enormously. 
 
 
IV. Graphical programming 
 
We developed the FPPA Simulink model based on a floating point computational data flow. The 
physical FPPA architecture is built on a fixed-point computation data flow. Using floating point 
in Simulink simplifies the FPPA model complexity tremendously, and gives the FPPA algorithm 
designer a means to compare his/her ideal FPPA implementation to a Matlab or C reference.   
Future versions of this environment will also permit fixed-point simulation that faithfully models 
the behavior of the FPPA data path. 
 
Figure 3 shows the FPPA graphical programming design flow, which demonstrates a process that 
takes the run-time or program memory information from the Simulink application model and 
feed it directly to the FPPA simulator.  In addition, the data path (synchronous data flow pipeline 
consisting configured PEs and input and output ports) and the floating point input data format 
from Simulink are feed into the SIFopt tool, which then convert floating point data flow pipeline 
to an integer format in an optimized fashion [7, 8].  The output of the SIFOpt tool feed into the 
Configasm (Configuration Assembler) tool, which converts it to compiler code and feeds it to the 
FPPA standalone simulator.  We use the PERL programming language to glue SIFOPT, 
ConfigASM, FPPA simulator and FPPA Simulink model together. 
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Figure 3:  FPPA graphical programming design flow 

 
  
 
 
V.  FPPA Simulink Model 

 
We model the FPPA architecture from the PE level, which allows us to incorporate the 
unconditional, conditional and runtime functionalities to the PEs model.  Each of the PEs can be 
viewed as shown in Figure 4, where X, Y and W are input data streams to the PE and the “1/Z” 
represents an input latch, which synchronizes data transfer between PEs.  Constants C0 and C1, 
data path function DP, and runtime firing RT are set in the configuration phase.    Data path DP 
determines what function the PE will compute. For example, the PE might be configured to 
multiply Y by constant C1, and add X to the result.  Runtime variable RT contains a firing 
pattern for the PE during the execution phase.   The PE is composed of combinational logic; 
therefore we can think of the PE as a function that maps variables X, Y, W, C0, C1, DP and RT 
into a value that is passed to the output port.  The PE “fires” when it latches new data at input 
ports X, Y and W; the result appears at the output after a period determined by combinational 
logic delays. If the PE doesn’t fire, it holds the output value constant.  
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Figure 4: Input / Output signals diagram of the Processing Element 

 
In addition to computation, the PE implements conditional or unconditional data path selection. 
Referring to Figure 4, under the unconditional category, the PE can be configured or 
programmed to perform such expressions as shown in Table 1, where “>>” and “<<” are right 
and left shifts; however, Table 1 does not represent an exhaustive lists of possible PE operations. 
 

X+Y X - Y (X - Y) * W (X + Y) >> 2 
X*C1 Y + C0 (X + Y) * W (X * Y + W) << 5 

X and Y X or Y X * W ( X and Y ) >> 7 
X xor Y neg X X * Y + W W << 13 
X nor Y neg Y X * Y - W Delay 

Table 1: the sample list of possible behaviors of the PE  

 
Under the conditional computation category; the PE performs an “if else” conditional statement 
base on two possible computational expression.  The pseudo code of the “if else” statement, 
which the PE employs shown in Figure 5.  
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Figure 5:  The PE pseudo code for the conditional computational  

If (condition) then 
 Perform expression A; 
Else 
 Perform expression B; 
End if 
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VI. Configuring FPPA using the Simulink graphical design environment 
 
We took advantages of Simulink’s rich graphical user interface (GUI) programming capabilities 
and programmed a user friendly GUI that allow the FPPA algorithm designer to configure PEs 
and connect the configured PEs using the familiar click and drag operations to construct a 
synchronous data flow pipeline.  We implemented different PE operations as Simulink functional 
blocks.  Figure 6; shown the some of the PE blocks currently available in the FPPA PE Simulink 
library models.  
 
 
 
 
 
 
 
 
 
 
 
 
 
E  
 
 
Figure 7 shown how we would configure the expression Z * (C0 + Y) where C0 = 10 and also 
note that PE is set to fire on every clock cycles because the Fire Pattern is set to [1].  However, if 
the Fire Pattern is set to [1 0], the PE will fire on every other clock cycles; on the alternate 
cycles, it will be hold the last input data in the PE internal register.  Likewise if Fire Pattern is set 
to [1 0 0] the PE is set to enable one every three clock cycles. 
 

 
Figure 7: Unconditional PE configuration GUI, which configures PE to perform Z * (C0 + Y) where C0 = 10 
and the PE is set to enable on every clock cycle. 

Figure 6: FPPA simulink model of the PE 
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VII. FPPA example applications using Simulink graphical environment 
 
For this section, using the FPPA’s PE Simulink library along with the Simulink graphical 
environment we will demonstrate graphical programming for the reconfigurable processor via a 
four tap FIR filter and a down sampling application.  Note that for each of these applications we 
will implement the floating point Simulink model, and not convert it to a fixed point model. 
 
  Application One: 4-tap finite impulse response (FIR) filter 
 
The four tap FIR filter equation that suit to implement in the FPPA architecture is shown below: 
 
Let  

w1, w2, w3 and w4 be the FIR filter coefficients 
X be the input value 
Y be the output value 

 
Then the 4-tap FIR filter can be expressed as [6]: 
 
 

)3(3)2(2)1(1)(0 −⋅+−⋅+−⋅+⋅= kxwkxwkxwkxwY
 

 
Using the expression above of the four tap filter with the coefficients as .15, .35, .15 and .35, 
respectively; we constructed Figure 7, which produces the following pipeline: 
 

 
Figure 8:  FIR filer data flow pipeline using the FPPA architecture 

 
 
The configuration, or function, of each of the PE is shown on the top right corner of each 
Simulink model adjacent to the output port, as shown if Figure 8.  Furthermore, each PE is 
configured to fire on every cycle, and the “valid” output signal from the FIR filter is valid = 1 if 
the “Output” signal is stable to read; otherwise the valid=0 indicating the “Output” signal is not 
ready to read.  Figure 9 and 10 show the input and output signal from the FIR filter, respectively. 
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  Application Two: 4 taps FIR filter with down sample by 2  
 
 
For this section we are implementing a same filter shown in the previous section; however, we 
also incorporate down sampling by a factor of 2 at the output of the FIR filter.  This combination 
of an FIR filter followed by down sampling is typical of a wavelet decomposition operation. The 
block diagram of application two are shown in Figure 11. 
 

 
Figure 11:  High level signal flow diagram of the FIR filter with down sample by 2 

 
We use the firing pattern concept to implement down sampling; that is to set the fire pattern of 
the last PE of the data flow pipeline to [1 0], which mean that the last PE will fire the PE to 
process data on every other clock cycle.  Figure 12 shows the FPPA Simulink model for the FIR 
filter followed by down sample by a factor of 2.  Using the input signal shown in Figure 9, and 
running the simulation with the data flow pipeline shown in Figure 12 produces the result in 
Figure 13.  Note that the output waveform is now 256 samples.  
 

  
Figure 12: FIR filter follow by a down sample by 2 
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2 

 
Source  
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Figure 9: Input source signal with 512 samples Figure 10:  the FIR filtered output signal 
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Figure 13:  Output waveform of the FIR filter follow by a down sample by a factor of 2 

 
VIII. Future work  

 
Up to now, the majority project effort aimed on the functionality and validation between floating 
point and integer base design as well as demonstrated how graphical programming is intuitive for 
reconfigurable processing; especially the FPPA.  To continue making the reconfigurable 
processor FPPA graphical design environment easy to use, flexible and practical for algorithms 
designer we are particularly interest in integrate three new features for the FPPA graphical 
interface.  
 

• Extend the FPPA Simulink model to simulate a fixed-point data flow pipeline, which 
faithfully model the functional behavior of the FPPA chip.   

• Develop a cook book for optimized common used signal processing components such as; 
trigonometry functions, matrix computation, log, accumulator, up and down sampling, 
iteration methods, etc.  

• Compile the Simulink model into configuration and run-time files for the FPPA. 
• Implement automatic optimization features, to optimize for speed and/or physical 

resources. 
 
 
 
IX. Conclusions 
 
This paper presented a graphical design environment for programming the Field Programmable 
Processor Array; enable a programmer to generate applications for the FPPA in an intuitive and 
visual fashion, while suppressing unnecessary architectural detail. This graphical programming 
environment was illustrated on two three sample problems. This programming method promises 
to greatly simplify programming the FPPA, reducing error and increasing programmer 
productivity. 
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