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ABSTRACT

FPGA-based designs are more susceptible to single-event
upsets (SEUs) compared to ASIC designs. Soft error rate
(SER) estimation is a crucial step in design of soft error tol-
erant schemes to balance reliability, performance, and cost
of the system. Previous techniques on FPGA SER estima-
tion are based on time-consuming fault injection and simu-
lation methods. In this paper, we present an analytical ap-
proach to estimate the failure rate of designs mapped into
FPGAs. The proposed approach does not require physical
implementation. Experiments show that this technique is or-
ders of magnitude faster than fault injection while very ac-
curate. We also report on Mean Time To Manifest (MTTM)
error for different used resources of FPGAs.

1. Introduction

Nowadays, FPGAs are widely utilized in many application
domains such as industrial, spacecraft and embedded appli-
cations due to their high performance, no Non-Refundable-
Engineering cost and fast Time-To-Market.

Although FPGAs provides the advantages of low-cost
design and fast Time-To- Market, the importance of depend-
ability issues limit their widespread use in mission- critical
applications [17]. FPGAs are vulnerable toSingle Event
Upsets (SEUs) [20]. SEUs are induced by energized parti-
cles hitting the silicon device. An SEU with sufficient en-
ergy changes the logic state of the memory element, pro-
ducing asoft error. One possible solution to this problem
is to useradiation-hardened FPGA devices. These devices,
however, are much more expensive than Commercial-Off-
The-Shelf (COTS) FPGAs; thus when cost is a major issue,
the COTS devices are affordable [22]. Moreover, radiation-
hardened devices are few generations behind state-of-the-art
COTS devices.

A particle hit on a configuration bit cause a permanent
error in the mapped design. Conventional fault-tolerant tech-
niques [12] can protect only user-bits but not configuration
bits. The only applicable fault-tolerant mechanism to pro-
tect configuration bits isTriple Modular Redundancy (TMR)
scheme in all used logic and routing resources[6] [17]. This

technique can be included in the design to be implemented
by the COTS FPGAs. However, this solution enforces high
area and performance penalties. It may not be affordable
to put redundancy for all components when power and area
are important constraints. To achieve a high level of relia-
bility, efficient approaches combine both hardware (spatial)
and software (temporal) redundancies.

The first step in designing such schemes is to study the
effect of soft errors at the system level and identify the most
vulnerable components in the system. Using this analysis
and based on the redundancy budget, these components are
protected with the highest priority (hardware or software re-
dundancy).

Previous work on soft error rate (SER) estimation is
simulation-based, radiation-based, or a combination of both
[2] [5] [7] [8] [9] [17] [22]. All these methods are based
on Fault Injection (FI). Using this methodology, a limited
number of error sites are targeted for fault injection. Several
workloads are then run to measure the number of detected
failures by comparing the results of each run to the clean
run. These steps make FI studies both time-consuming and
inaccurate since the analysis is based on statistics. More-
over, these studies cannot be used during design phases since
they need physical implementation.

In this paper, an accurate SER estimation method for
FPGA designs is presented. The presented method does not
require physical implementation, i.e. only a synthesis tool
and a software program are used. In this method, first we
compute the netlist error rate (the error rates of all circuit
nodes). Then, some efficient graph algorithms are utilized
to traverse the circuit topology from the erroneous node to
the circuit outputs to compute the error propagation prob-
ability. Based on the netlist error rate and the propagation
probabilities, we compute the failure rate of the system (the
probability of an error appearing at system outputs). We
also report onMean Time To Manifest (MTTM) error for
different used FPGA resources (e.g., routing, look-up ta-
bles, and control/clocking).

The rest of this paper organized as follows. Section 2
explains the previous SER estimation techniques. Section
3 describes the error models of SRAM-based FPGAs. The
failure rate estimation method is given in Section 4. In Sec-
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tion 5, the failure rate estimation of FPGA designs is pre-
sented. Experimental results are given in Section 6. Finally,
Section 7 concludes the paper.

2. Previous Work

Error propagation probability (EPP) is one of the main fac-
tors of SER estimation of the circuit nodes [19]. Previous
SER estimation techniques use fault injection and random-
vector simulation [2] [5] [7] [8] [9] [17] [22]. To compute
the EPP of a node, several random vectors are applied to
the circuit inputs. Then the system outputs are observed
to calculate the probability that the erroneous value of that
node is synthesized by the input values and is propagated
to the outputs. Fault injection is done using either radiation-
equipment or bitstream alteration. Radiation-based methods
[5] [7] are very expensive and they are not commonly used.
These methods are mainly used for device characterization,
not SER of a particular mapped design.

The methods presented in [2], [8], [9], [17], and [22]
compute the SER of an implemented design based on con-
figuration bitstream alteration. The device is configured for
every faulty bitstream, i.e., one configuration bit is flipped
for each workload. Then, it is run several clock cycles
with different input vectors to compare the results with the
golden-run results. These approaches can be classified into
two categories, as follows. In the first category [2] [22],
results are gathered and compared in a host system. So,
it takes too much time to do experiments for all possible
faults. In the second category [8] [9] [17], one FPGA is
used for faulty run and one or two other FPGA(s) are used
for the golden run and comparison of results. The proto-
type board consists of two or three FPGAs. To implement
and evaluate larger designs, a new prototype board consist
of higher density FPGAs is required.

3. Background: FPGA Error Models

The effects of SEUs in digital circuits can be classified as
a) transient and b)permanent errors. SEUs can cause tran-
sient errors in the combinational logic resources, which can
be propagated and captured in flip-flips. Also, SEUs can di-
rectly make transient errors on memory elements and change
the contents of memory caches, main memories, register
files and flip-flops. These errors are called transient because
they may be overwritten or corrected using error-detection-
and-correction techniques. So, transient errors impacts the
user-defined logic and flip-flops of the FPGA.

Moreover, SEUs can make permanent errors in a FPGA
if they alter the contents of configuration bits. Note that
these errors differ from those errors which damage the de-
vice (hard errors). In this case, the configuration bit (and

also the mapped design) remains erroneous until correct con-
figuration is re-downloaded into the FPGA. So, these per-
manent errors are recoverable. In the rest of this paper,
when we refer to permanent errors, we mean recoverable
permanent errors.

The study and analysis of transient errors has been well
described in [1], [4], [11], and [15]. They investigate the
circuit behavior by injecting faults into the simulated or
emulated model of the design. The fault injection in these
techniques implies the alteration of memory elements such
as data-path registers and control-unit registers, as wellas
alteration of input, output or internal signals [22]. Conse-
quently, the effect of SEUs in the presence of the errors can
be straightforwardly studied using common simulation or
emulation tools.

The study of permanent errors due to configuration al-
teration requires more complex analysis since the simple
bit-flip fault model cannot be exploited. An SEU in the de-
vice configuration bits can modify the interconnect inside a
CLB. It can also affect the routing signals between different
CLBs. Moreover, an SEU may change the functionality of
the logic part by affecting the look- up tables (LUT). This
issue has been addressed in [7], [17], and [22].

To summarize, there are two memory resources in FP-
GAs, a) user bits, and b) configuration bits. An SEU on user
bits cause transient error, and an SEU on configuration bits
lead to permanent errors.

3.1. Transient errors

Transient errors do not alter SRAM configuration bits but
they affect user-defined logic and flip-flops as follow:

A bit-flip on combinational part inside CLBs: An
SEU affecting a combination part makes a transient error
in logic gates. This can be propagated to the sequential part
and make a bit-flip error. Fig. 1 illustrates how an SEU
makes a bit-flip error in a flip-flop. It has been shown that in
ASIC designs, combinational logic is much less susceptible
to soft errors than are memory elements [16] [24]. This is
due to combinational logic provides some natural resistance
to soft errors including logical masking, electrical masking,
and latch-window masking [24].
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Fig. 1. An SEU affects one of inputs of the AND gate and
makes a bit-flip error.

A bit-flip on user-defined flip-flops and memory el-
ements: An SEU may directly affect the contents of flip-
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No. of No. of Config.
Device FFs (Nff) Bits (Ncb) Nff/Ncb
XCV50 3,996 559,200 0.7%
XCV400 22,812 2,546,048 0.9%
XCV800 43,872 4,715,616 0.9%
XCV1000 56,832 6,127,744 0.9%

Table 1. Number of configuration bits versus number of
flip-flops in Virtex FPGAs.

flops and memory elements. The flip- flop will remain erro-
neous until it is rewritten with another data or it is corrected
by appropriate error detecting and correcting techniques.

3.2. Permanent errors

An SEU changing a configuration SRAM cell makes a per-
manent effect until the original configuration bitstream re-
downloaded into the FPGA. This type of error is the major
error type in FPGAs because the number of SRAM cells
dominates user-defined memory elements. Typically the
number of SRAM configuration cells are more than 95%
of all memory elements inside an FPGA [26]. As an exam-
ple, Table 1 shows the number of configuration bits and the
number of flip-flops for some Virtex FPGAs.

The permanent errors are classified similar to the clas-
sification given in [9]. They are routing error, LUT bit-flip,
and control/clocking bit-flip.

Routing errors: Programmable interconnect points
(PIPs), multiplexers and buffers constitute the programmable
routing network of a Virtex FPGA. Typically, more than
80% of transistors in an FPGA are used in the routing net-
work [25].

A routing signal may routeinter-CLBs or intra-CLB.
An inter-CLB routing signal connects two or more CLBs.
Those that used inside a CLB are called intra-CLB signals.
Switch matrices and line segments are used to route inter-
CLB while multiplexers and buffers are mostly used for
intra-CLBs. Select-bits of multiplexers comprise more than
half of the susceptible SRAM cells to SEUs, as shown in
[9].
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Fig. 2. An impact of SEU on routing signals

An SEU changing a configuration routing bit causes a
switch open, switch short or bridging error (wired-or, wired-
and), as shown in Fig. 2. Also, a PIP error may occur inside
a switch matrix. Fig. 3 illustrate this situation. Consider

a chain of PIPs connecting two nodes of the circuit. Any
switch open in this chain results in an open error in the
netlist. Also, if there is a switch short on an unused PIP
connecting two nodes of the circuit, it results in a bridging
error. Buffer errors are buffer on and buffer off. These are
shown in Fig. 4.
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Fig. 3. A typical 3x3 switch matrix
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Fig. 4. Buffer error models

A bit-flip on LUT configuration bits: A look up table
implement a logic function by storing all values for the truth
table. Fig. 5 shows an example how a bit-flip changes the
functionality of an LUT.

0
 1
1
1


0
 1
0
1


1
 1
0
1


1
1
1


LUT

F1


F4


F3


F2

O


0
 1


0
 1
1
1


0
 1
0
1


1
 1
0
1


1
1
1


LUT

F1


F4


F3


F2

O


0
 1


Fig. 5. LUT bit-flip

A bit-flip on control/clocking bits: There are control
bits inside CLBs and IOBs to determine miscellaneous func-
tionalities. As an example, there are some control bits that
determine whether the LUT performs as a look up table, a
dual-ported RAM, or a programmable shift register. Also,
there are some SRAM cells to route clock signals through-
out the circuit.

4. Failure Rate Estimation

Failure rate estimation is very important to a) assure the
minimum reliability of the entire system, and b) to balance
reliability, performance, and cost of the system. While par-
ticle flux uniformly encounters the entire system, the prob-
ability of an erroneous value being observed at the system
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outputs highly depends on which node a particle is striked
and the values of other nodes of the circuit at that time
(system state). We recall that Error propagation probabil-
ity (EPP) is one of the main factors of SER estimation of
the circuit nodes [19]. SER estimation time using random-
simulation exponentially increases with the size of the cir-
cuit. To overcome this difficulty, a fast and accurate tech-
nique to compute the EPP of a node is presented in [3].
We briefly describe the proposed method in the next sub-
section, then we adjust the proposed method for FPGA-
based designs.

4.1. Error propagation probability computation

Here we use the signal probabilities of all nodes in the com-
binational part and then compute the error propagation prob-
abilities based on the topological structure of the circuit. In
the proposed approach, the structural paths from the error
sites to all reachable outputs and flip-flops are extracted.
Then, these paths are traversed to trace and compute the
error propagation probability to reachable outputs or flip-
flops. An on-path signal is a net on a path from the error
site to a reachable output. Also, anon-path gate is defined
as the gate with at least one on-path input. Finally, anoff-
path signal is a net that is not on-path and is an input of an
on-path gate.

For error propagation probability calculation, as we tra-
verse the paths, we use signal probability for off-path sig-
nals and use ourpropagation rules for on-path signals. The
signal probability (SP) of a linel indicates the probability
of l having logic value 1 [21]. SP techniques have been
presented in [14, 18, 23]. The rules designed for on-path
signals are mainly used to keep track of the polarity of prop-
agated erroneous value to be used in reconvergent points.
These rules are well described in [3].

Finally, we getNetlist Failure Probability vector (N(n)),
wheren is the total error sites.Ni is defined as the system
failure probability given that nodei is erroneous. Based on
the experiments on ISCAS89 benchmarks, the accuracy of
the presented approach (for transient errors) is within 6%
of the random-simulation method while it is 4 to 5-order of
magnitude faster.

5. Failure Rate Estimation of FPGA Designs

There are some differences between failure probability com-
putation in ASIC designs and FPGA-based designs:

• In ASIC designs, we only need to compute the prop-
agation of an erroneous value from the error site to
POs or FFs. But in FPGA designs, we need to com-
pute the activation probability as well as the propa-
gation probability. This is because in FPGAs, failure

occurs if the erroneous node is first activated and then
propagated to POs or FFs (permanent errors).

• In FPGAs, the errors occurring in the configuration
bits remain unchanged during the next clock cycles.
So, the same failure probability is valid for the next
clock cycles. however in ASIC designs, if an erro-
neous value, due to an SEU, is masked and not prop-
agated to the outputs, the effect of the SEU will dis-
appear in the next clock cycles.

• The error sites in ASICs are mainly logic gates rather
than routing signals. But in FPGAs, routing signals
(controlled by SRAM cells) constitute more than 70%
of total sensitive SRAMs [9]. Sensitive SRAMs are
those that any changes to them will eventually affect
the user-bits.

• In FPGAs, if an SEU flips the content of a configura-
tion bit, an erroneous value can propagate from the er-
ror site to the system outputs without any attenuation.
But attenuation, also calledelectrical masking is one
of the key factors that cause the combinational logic
in ASIC designs to be much less susceptible to soft
errors than memory elements [24]. Electrical mask-
ing occurs when the pulse resulting from a particle
strike is attenuated by subsequent logic gates due to
the electrical properties of the gates. This attenuation
reaches to the point that the SEU does not affect sys-
tem outputs.

To compute the failure rate of a design mapped into an
FPGA, we perform the following steps. First, we compute
the netlist failure probability of the system due to an error
occurring on a node. Second, we compute the error rate of
all nodes of the circuit. Third, the system failure is com-
puted based on the previous steps. We are going into the
details of each of these three steps in the following subsec-
tions.

5.1. Netlist Failure Probability (Ni)

Computation ofNi depends on the error model and the cir-
cuit topology. In general,Ni is the product of the activation
probability of nodei (APi) and the propagation probability
of that node. We use signal probability of the node forAPi.
To compute the propagation probability, we use the method
presented in Sec. 4..

In the case of open and stuck-at errors,Ni can be com-
puted according to Equation 1. The first part of this equa-
tion accounts for the erroneous value being 0 and the sec-
ond part accounts for the erroneous value being 1. Each part
expresses that the erroneous value should be first activated
(SPi) and then propagated to the outputs (PPi). Note that
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the propagation probability of a signal depends only on the
values of the other signals. So,PPi(0) = PPi(1).

Ni = SPi × PPi(0) + (1 − SPi) × PPi(1) = PPi (1)

PPi: Propagation probability
SPi: Signal probability of node i is used as activation

probability

In case of bridging wired-AND errors (between netsi

andj), Ni can be computed according to Equation 2. The
first part of the equation expresses the probability of nodei

being 1 and nodej being 0. The second part computes the
probability of nodei being 0 and nodej being 1. We use the
same approach to computeNi for bridging wired-OR errors
between netsi andj, as shown in Equation 3.

Ni = [SPi × (1 − SPj) × PPi(0)]

+[(1 − SPi) × SPj × PPj(0)] (2)

Ni = [SPi × (1 − SPj) × PPj(1)]

+[(1 − SPi) × SPj × PPi(1)] (3)

In case of a bit-flip in one of LUT cells (celli), Ni is
computed as shown in Equation 4. To compute the failure
probability due to LUT SRAMs, we use the propagation
probability of the LUT output. It is computed as the prod-
uct of the propagation probability of LUT output and the
activation probability of the SRAM cell from LUT inputs
(see Equation 4).

Ni = APi × PP (LUTout) (4)

PPi: Propagation probability
APi: Activation probability of cell i computed during SP

computation

5.2. Node Error Rate (PRi)

To compute the permanent error rates of the circuit nodes,
PR(n) is defined (n: total error sites), wherePRi is the
permanent-error rate of nodei. PRi is calculated depending
on the raw error rate of the device, the error model, and the
number of SRAM configuration bits constituting the node.
The error rate of a node of an FPGA design is directly pro-
portional to the number of SRAM configuration cells con-
trolling that node. So, nodes with more SRAM cells have
higher error rates. For example, consider two nodesn1 and

n2 consist of 4 and 2 pass-transistors (SRAM cells), respec-
tively (Figure 6). The permanent-error probability ofn2 is
less thann1 becausen1 has more candidate locations for
permanent-errors thann2. PRi is computed as shown in
Equation 5.f is the total possible errors, which can occur
on nodei. For example,f equals to one for LUT SRAMs.
fMUX equals to the number of select bits. For a routing
node,f is directly proportional to all ON/OFF switches con-
nected to that node. As an example, the permanent-error
rate of nodeAB, shown in Fig. 7, equals to six times the
raw error rate of an SRAM-cell. The raw error rate of an
SRAM cell (r) depends on the circuit device and the flux
encounters the device. Current predictions show that typi-
cal FIT rates for latches and SRAM cells (measured at sea
level) vary between 0.001-0.01 FIT/bit [10, 13, 20]. One
FIT is equal to one failure in a billion hours (109). The
FIT/bit also increases with elevation. At 10Km, the FIT/bit
is approximately 100x higher [27].
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PRi = r × fi (5)

r: Raw error rate of an SRAM cell
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Fig. 7. Permanent-error rate of a routing node is directly
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5.3. Failure rate computation

After computation ofPRi andNi, the system failure prob-
ability due to nodei can be compute as follows:

System failure rate Si = PRi × Ni (6)

Having the system failure rates computed for all nodes
(Si), we compute the system failure rate for the entire cir-
cuit in the clock cycle after the particle hit, according to the
Equation 7.

S = 1 −

n∏

i=1

(1 − Si) (7)

Finally, the system failure rate of the whole circuit after
c clock cycles from particle hit equals:

S = 1 −
n∏

i=1

(1 − PRi × (1 − Ni)
c) (8)

6. Experimental Results

In the experiments, we use Xilinx FPGA devices [26]. To
extract detail information (including used resources) of a
design mapped into an FPGA, the Xilinx design language
(XDL) is used. The error list considered in the experiments
includes mux-open, PIP open, buffer-off, LUT bit-flip, and
control/clocking bit-flip.

A software tool has been developed to extract the netlist
information from the XDL file including the list of used re-
sources, sensitive bits, and the error list. The failure rate
of all circuit nodes are computed based on the above infor-
mation. The experiments have been executed on a DELL
PowerEdge 2650c© running Redhat Linux 9.0c© operating
system.

We have mapped ISCAS89 benchmark circuits into Xil-
inx Virtex XCV300 devices. Table 2 shows the number of
sensitive bits of the Virtex XCV300 device for ISCAS89
benchmark circuits. The sensitive bits are classified accord-
ing to the error models described in Sec. 3. As shown in
this table, the configuration routing bits constitute almost
half of the total sensitive configuration bits. As shown in
this table, the number of FFs, on average, is less than 0.5%
of the number of configuration bits.

Table 3 shows the mean time to manifest errors from
the error site to the system outputs. MTTM is classified for
different types of configuration bits (routing, LUT, and con-
trol/clocking). The MTTM results have been measured for
the Virtex XCV300 device. As shown in this table, the aver-
age MTTM of routing, LUT, and control/clocking resources
for this device are 3.64, 25.63, and 1.63 cycles, respectively.
This shows that control/clocking bits are the most sensitive
ones. As the results show, the MTTM of the routing and

Circuit Routing LUT Control/ Total No. of
Clocking Conf Bits FFs

s298 445 410 133 988 14
s344 536 392 168 1096 15
s349 650 520 187 1357 15
s382 807 712 207 1726 21
s386 714 660 160 1534 6
s400 818 700 218 1736 21
s444 760 692 208 1660 21
s510 1328 1244 299 2871 6
s526 901 856 227 1984 21
s641 1418 1056 375 2849 19
s713 1320 988 355 2663 19
s953 2979 2644 597 6220 29
s1196 3320 2976 613 6909 18
s1238 3339 3224 652 7215 18
s1488 4013 3688 702 8403 6
s1494 4024 3628 695 8347 6

ave 1710 1524 362 3597 16

Table 2. Number of sensitive SRAM bits for each part

control/clocking resources is much less than the MTTM of
the LUT resources. These results also show that LUTs are
the least sensitive bits to SEUs, although they are easiest
to be protected against soft errors (implementation of parity
schemes in LUTs is very straightforward). If we consider
normalized manifestation rate for each category (routing,
LUT, and control/clock) which is normalized to the number
of sensitive bits as#sensitive bits

MTTM
, routing bits are the most

vulnerable ones.

The detailed execution time of the presented SER esti-
mation method is reported in Table 4. The total time of this
SER estimation method includes a) the time needed to ex-
tract the netlist and also to extract SRAM cells information
from the XDL file, b) SP computation time, and c) error
propagation probability computation time. As shown in this
table, the SER of an ISCAS89 circuit is computed, on av-
erage, in 38 seconds. As can be seen in this table, SP com-
putation is the most time-consuming part of our estimation
method.

The accuracy of our SER method versus the random-
simulation method has also been reported in Table 4. The
accuracy, on average, is about 95%.

The system failure rates of these benchmark circuits for
the Virtex device are reported in Table 5. In these experi-
ments, the raw error rate of an SRAM cell is assumed to be
0.01 (FIT/bit). Failure is observed for one and 50 clock cy-
cles after an SEU flips the content of an SRAM cell. Since
SEUs cause permanent errors in configuration bits, the fail-
ure rate in 50 cycles after an SEU occurrence is much higher
than the failure rate in the first clock cycle.
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Circuit Routing LUT Cnt/clocking

s298 2.73 20.22 1.23
s344 2.59 17.48 1.37
s349 2.91 20.44 1.39
s382 3.30 22.11 1.40
s386 3.88 30.61 1.79
s400 3.13 20.80 1.40
s444 3.00 21.92 1.39
s510 4.87 34.77 2.14
s526 4.03 27.68 1.48
s641 2.42 16.96 1.41
s713 2.41 16.82 1.37
s953 3.23 21.22 1.49
s1196 5.17 36.59 2.16
s1238 5.56 41.23 2.33
s1488 4.47 29.92 1.90
s1494 4.60 31.39 1.98

ave 3.64 25.63 1.63

Table 3. Mean Time To Manifest (MTTM) errors to outputs
(Results in terms of cycles)

7. Conclusions

Designs mapped into FPGAs are more susceptible to soft
errors than ASIC implementation. Analysis of the effect
of soft errors in different resources of an FPGA is a key
factor in development of low cost, high performance, and
high reliable solutions.

In this paper, a very fast and accurate SER estimation
technique for FPGA-based designs has been presented. The
experimental results show that the presented method is or-
ders of magnitude faster than conventional fault injection
methods while more than 95% accurate. Moreover, the re-
sults show that the error manifestation time for routing and
also clock/control resources are 10 times less than that for
LUTs.
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