Verification and Validation of Programmable Logic Devices

James A. Cercone1), Michael A. Beims2), and Kenneth G. McGill3)
1) West Virginia University – Institute of Technology

2) Science Applications International Corporation

3) National Aeronautics and Space Administration’s IV&V Facility

Abstract:

The usage of Programmable Logic (PL) is becoming commonplace within NASA projects, facilities, and research. As part of this trend, Programmable Logic is seen more frequently in Space Systems’ software undergoing Independent Validation and Verification (IV&V) at NASA’s IV&V Facility. Programmable logic chips, such as Field Programmable Gate Arrays (FPGAs) are being employed to standardize functionality formerly performed by the Central Processing Unit (e.g. battery charging algorithms) and to create custom capabilities (e.g. science domain specific massively parallel data compression) within satellites and instrumentation. PL software is tested for functionality, boundary conditions, and operational simulation but most of this logic programming software is not subjected to verification and validation methods employed in main stream software. Existing methods such as Fagan and Gibbs inspection of software can be adapted to PL designs for use at the Design Review level as well as for Quality Assurance. At least one current NASA Space Systems appears to be a good candidate for use as a pilot project for Independent Verification and Validation of PL software due to significant reliance on PL devices for critical spacecraft control and critical science instrument functionality.

Definition of Terms:

Programmable Logic: A broad array of devices and systems such as Programmable Logic Controllers (PLC), Programmable Logic Devices (PLD), Programmable Array Logic (PAL), Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), System-on-Chip (SOC), and Complex PLD (CPLD) that can be utilized for digital logic implementation and control.

Programmable Logic Device: PLD’s are arrays of logic based on re-writable memory technology. Design changes can be quickly implemented by simply reprogramming the device. PLD’s have logic gate capacity in the hundreds of gates range.

Field Programmable Gate Array’s: A FPGA is a logic network array that can be programmed after its manufacture. It can consist of various logic elements, either gates or lookup table, read/write memory, flip-flops and interconnection wiring that is programmable.

Very Large Scale Integration (VLSI) Hardware Design Language VHDL: A hardware description language that is particularly suited as a language for describing the structure and behavior of digital electronic hardware designs, such as ASICs and FPGAs as well as conventional digital circuits

Key Words:

Programmable Logic Devices, PLD, FPGA, Software Inspection, VHDL

Abbreviations:

IV&V Independent Verification and Validation

V&V Verification and Validation

PL Programmable Logic

FPGA Field Programmable Gate Array

CAD Computer Aided Design

VHDL VLSI (Very Large Scale Integration) Hardware Design Language

Introduction:

Programmable Logic (PL) devices are hybrids of hardware and software. While primarily hardware devices, PL’s behavior is determined by previously loaded software. This hybrid aspect of PL devices is not being sufficiently addressed when the devices are developed, tested, and validated. Presently, current NASA Space Systems tend to treat PL devices as essentially hardware and are simply tested for desired functionality. In essence, successful functional testing and simulation comprise the primary criteria for releasing PL based projects into production. The software development processes and techniques employed in developing the software implemented in the PL devices are not subjected to the same rigor as would be required for other forms of mission critical software. The FPGA is one specific PL devices that serves as the focus of this presentation

A recent survey conducted within the NASA Centers intended to identify projects, facilities, and NASA organizations that use PL devices revealed that their usage at NASA is widespread and varied (1). The survey also indicated that PL devices are used in safety-related projects and facilities as well as in pure research environments. Additionally, the survey revealed that approximately two-thirds (2/3) of all the projects surveyed did not incorporate the use of any standards, procedures, or project guidelines in the development of the software implemented in PL devices, which may be attributed in part to the lack of such standards, procedures or guidelines.

Presently, NASA has provided no clear guidance on the software aspects (design and development) of PL devices, nor on how to assure the safety, reliability, or quality of these hybrid devices. Considering the current practice where PL devices undergo limited software analysis and testing and are typically tested for functionality as a hardware item, software assurance engineers rarely verify the process used to develop the coding for the PL devices, nor the end PL software “product.” As the application of PL devices becomes more widespread, especially in mission critical applications, the means to verify and validate their design and functionality will be essential.

PL software designs are presently tested for functionality, boundary conditions, and operational simulation but unlike main stream software, most PL software designs are not subjected to formal Verification and Validation, not to mention Independent Verification and Validation practices. Considering the accepted fact that detecting and fixing defect at the design phase of the logic is much simpler and less expensive than in later phases, the objective of this research is to develop a methodology that V&V and IV&V analysts can apply to the software aspects of PL’s in the earlier phases of PL development.

This research will focus specifically on FPGA’s within the PL family and aims to identify design fault characteristics specific to the FPGA and then explore the feasibility of applying existing inspection methods (e.g. Fagan and Gibbs) that may be candidates for direct application to FPGA designs. Once a suitable set of methods has been identified, the research will result in the development of modifications to the design phase, peer and design review methodologies. Incorporating and to prototyping those methods will be done by providing Independent Verification and Validation in a NASA case study.

Relevance to Software Safety and Mission Assurance:

FPGA design can be carried out at several levels of abstraction. These design levels can be loosely classified as high level graphical entry, the processor level (architecture, behavior, and systems level), the register level, and at the gate or logic level. Integrated design tools include languages such as VHDL, graphical schematic capture, and net wire lists. The design process utilizes CAD tools such as editors, simulators, and synthesizers that often allow free intermixing of the design methods and reuse of existing libraries.

Design methodologies for FPGA’s widely vary in the level of applied software engineering. Many small design teams tend not to follow the proven practices of software design and fail to design for the life cycle of the product. This is a direct result of the programming usually being done by engineers with digital design training but not versed in modern software engineering techniques. The FPGA designer is too often content with a completed project that works during simulation and the resulting synthesis under select boundary test conditions. Attention to stuck-at conditions, synthesizer introduced timing issues, and attribute settings may be overlooked during the final design phase.

These overlooked conditions, issues and settings have led to discovery of faults in PL software design late in the life cycle of NASA Satellites. Such errors have required hardware changes late in the development process and were both technical and schedule risks. Detecting and fixing these defects at the design phase of the logic would have been much simpler and inexpensive (3).

Compilation, simulation, and synthesis using current tools will detect many design faults but may neglect subtler flaws in seemingly correct designs. Some design flaw issues that may go undetected during compilation, simulation and synthesis include:

Reset inputs derived from sources external to FPGA

Outputs and internal inputs in unknown state during reset

Poor clocking strategies

Asynchronous designs crossing clocking barriers

Coding style – mixing of structural and behavioral modeling

Unstable and unnecessary code “circuitry” included in design

Inappropriate use of commercial core codeware

Poor design of state machines (such as unintentional race and dynamic hazards)

Susceptibility to single event effects

Startup transients created by unused (programmed) input/output pin connections

Incorporation of “One Hot” design Finite State Machine Designs that have excess unused states Synthesis stage replications of flip-flops and circuitry (such as one-hot coded Finite State Machine Designs)

FPGA designs that are primarily designed at the behavioral and the structural level using VHDL are good candidates for V&V methods since the VHDL is essentially a high level programming language. However, designs derived automatically from graphical and schematic entries can lack sufficient consideration of V&V tasks. This has been observed in design reviews at satellite vendors, where the hardware engineer was in control of the programming for the FPGA design (e.g. the Electrical Power Supply (EPS) expert programmed the EPS FPGA, the Telescope expert programmed the Telescope FPGA’s, etc.). To insure appropriate risk reduction from IV&V of FPGA software it appears necessary to develop a core set of personnel that have a base knowledge of FPGA design techniques and implementation specifics. Developing this core of personnel may be straight forward at the behavioral and structural level of design using VHDL but may prove more challenging for designs that are schematic and graphical based.

Methods and Procedures:

Initial research will heavily rely on the collection of existing FPGA fault data from NASA users supplemented with data from industry. In parallel to fault data collection, V&V methodologies such as Fagan and Gibbs (2) inspections will be investigated for direct application to FPGA designs. Existing code inspection methodologies need to be implemented to ensure highest possible quality in the VHDL code. Additionally, the resulting complier specific variations need to be reviewed. Auto generated logic (a result of the device fitting “programming”) needs to be characterized and assessed for impact, especially in attributes not apparent during functional testing such as the number of flip-flops used for finite state machine designs.

To ensure rigor, a modified spiral (iterative waterfall) method used for software development will be incorporated. Methodology will be operationally prototyped at the NASA IV&V facility in conjunction with an ongoing project.

Potential for Technology Transfer to NASA Software Projects:

Results of this research can be directly incorporated into all future and upgraded mission critical projects that use FPGA’s. New PL software designs would be subject to IV&V in a manner similar to other software designs based on the risk criteria currently applied to mission critical software executed in Central Processing Units.

This IV&V of PL software appears to be a critical need, relevant and acceptable for an upcoming space telescope project. This telescope has a large number of FPGA’s in its design. The logic associated with these devices has a high complexity, the logic design is expected to go to double digits in the number of releases, and the size of the logic is such it has outgrown the original die, causing a need to replace the hardware late in the life cycle of the instrument (after Critical Design Review). There are other candidates for transfer of this technology to ongoing Space Systems as well. The spacecraft for this telescope also uses FPGA in flight critical functions, although with less complex logic. A spacecraft related to this telescope’s spacecraft experienced an FPGA design defect that was not discovered until subsystem testing and that required a hardware change later in the development lifecycle than desired.

Success Criteria and Progress Metrics:

Progress can be measured by the completion of the distinct phases of the proposed project which also serve as major project milestones:

a) Identify FPGA design logic faults from NASA and industrial sites, documented literature, and comparison of typical FPGA logic design methods with proven software engineering methodologies including design and peer review methodologies.

b) Identify existing software engineering methodologies that can be directly applied to FPGA designs by tracing common defects to their underlying cause.

c) Suggest enhancements to developers’ design and peer review methodologies.

d) Provide field prototyped training materials for performing PL software V&V.

e) Successfully complete a pilot project.

Uniqueness of the Research:

Previous studies and standards such as the FAA – DO-254 for Complex Electronic Hardware and the Final Report of Safety-Related Complex Electronic Systems for the European Commission (1996) states that FPGA “software” is not currently required to undergo V&V evaluation.

V&V and IV&V rely upon the modern design processes of software engineering. Requirements analysis, framework, architecture design, and detailed design incorporate V&V as an integral part of the entire process. Current software languages support Object Oriented programming concepts, strong type checking, and runtime error trapping and handling which in turn provide risk mitigation that allows even more effective V&V and IV&V.

In contrast, it can be argued that FPGA programming has not evolved much beyond the classical sequential development methodology of: specify requirements, create the design, code, simulate and test. Often documentation and testing of an FPGA software project is left as “end of the project” tasks. Logic and functional testing are completed for known operational conditions and the “software” is burned into the PL device and released for project deployment. With successful functional testing as the primary criteria for releasing FPGA software into production, other aspects of current software Verification and Validation practices such as consideration of race conditions, graceful degradation for out of range inputs, etc. are overlooked. This FPGA programming methodology, focused on assuring the software does what it is supposed to do (while not assuring that the software does not do what it shouldn’t do), is where software engineering was when strictly procedural languages were the main stay of program design. Adapting IV&V methodologies relying on modern design processes to these current FPGA programming practices appears to be unique research.

A general literature review has found that some preliminary research has been conducted by NASA to determine programmable logic issues of FPGA’s (1). This research was mainly in the form of usage surveys and did not cover specifics of programming methodology. Additional literature searches yield cooperative efforts between NASA and the FAA as well as some European based studies (4). Most literature is concerned with hardware reliability as opposed to V&V of the underlying software. Textbook and published literature searches yield no substantial standard or methodology for FPGA logic V&V at this point in time.

References:

1. Berens, K., Programmable Logic Devices, Building the Case for Software-style Assurance, NASA OSMA SAS August, 2003, Morgantown, WV

2. Brykczynski, B., A Survey of Software Inspection Checklists, Institute for Defense Analyses, Software Engineering Notes vol 24 no 1, ACM SigSoft, January 1999, pg 82.

3. Katz, R., R. Barto, K. Erickson, Logic Design Pathology and Space Flight Electronics, 1999 MAPLD Conference, September 28-30 , 1999, Laurel, Maryland.

4. Lessons Learned from FPGA Developments Technical Report, FPGA-001-01,Version 0.2, September 2002, Prepared by Sandi Habinc, from various sources
Cercone
 6
113/MAPLD 2004

