Block I Apollo Guidance Computer (AGC)

How to build one in your basement

Part 5: Input/Output (IO) Module

John Pultorak December, 2004

Abstract

This report describes my successful project to build a working reproduction of the 1964 prototype for the Block I Apollo Guidance Computer. The AGC is the flight computer for the Apollo moon landings, and is the world's first integrated circuit computer.

I built it in my basement. It took me 4 years.

If you like, you can build one too. It will take you less time, and yours will be better than mine.

I documented my project in 9 separate .pdf files:

- Part 1 Overview: Introduces the project.
- Part 2 CTL Module: Design and construction of the control module.
- Part 3 PROC Module: Design and construction of the processing (CPU) module.
- Part 4 MEM Module: Design and construction of the memory module.
- Part 5 IO Module: Design and construction of the display/keyboard (DSKY) module.
- Part 6 Assembler: A cross-assembler for AGC software development.
- Part 7 C++ Simulator: A low-level simulator that runs assembled AGC code.
- Part 8 Flight Software: My translation of portions of the COLOSSUS 249 flight software.
- Part 9 Test & Checkout: A suite of test programs in AGC assembly language.

Overview

The I/O Module (IO) has 5 subsystems: IMI, KBD, INP, OUT, DSP

IMI (I/O Module external Interface) The IMI interfaces the I/O module to other AGC modules. 40-pin IDE connectors interface to the PROC and CTL modules. A 1pin connector interfaces to the MEM module. Inputs taken those modules are buffered to 1 LSTTL load.

KBD (Keyboard) An 18-button keyboard; the AGC's flight software user input interface. The keyboard/display unit is called the DSKY.

INP (Input Registers) The AGC has 4 16-bit input registers that receive data from the keyboard and discrete logic signals. INO reads from the keyboard and the STANDBY ALLOWED discrete signal. IN1-IN3 are not implemented in this replica.

OUT (Output Registers) The AGC has 5 16-bit output registers that drive the DSKY display and other spacecraft subsystems. OUT0 writes to the DSKY display; OUT1 drives the 6 discrete indicator lamps on the AGC DSKY display; OUT2-OUT4

are not implemented in this replica.

DSP (Display)

A matrix of green 7-segment displays; the output side of the AGC's flight software user interface. There are (3) 5-digit displays with +/- signs which can display decimal or octal data, and (3) 2-digit displays to show the current program (PROG), verb, and noun.

An additional panel of 6 indicator lamps shows AGC status and alarm states.

AGC input registers and control signals that read them onto the bus are shown in the diagram to the right. The 5-bit keyboard code and STANDBY ALLOWED switch are read from "register 0" (INO) when the R4 (RA4) control pulse is asserted. The signal is R4 because the register is mapped to memory address 4. The registers are actually buffers, not latches. Keyboard codes are latched internally in the keyboard subsystem.

The IN1, IN2, and IN3 registers are not implemented in this replica.

AGC output registers are shown in the next figure. OUTO drives the 7-segment DSKY displays. W10 (WA10) loads data from the write bus into the DSKY display; the "10" is because it is mapped onto memory location 10 (octal). Each 16-bit word controls 2 digits on the display. The digit pair is selected by a 4-bit code at the top of the word.

OUT1 drives discrete indicator lamps on a panel adjacent to the 7-segment display. W11 (WA11) writes to the register, and R11 (RA11) reads from it.

The OUT2, OUT3, and OUT4 registers are not implemented in this replica.

This diagram shows internal interconnections for the subsystems in the IO module.

IO Module External Interfaces

The IO module interfaces to the CTL and PROC modules through 40-pin IDE ribbon cables.

J103-IO: CTL-to-I/O I/F

INPUTS (to IO):

PIN	<u>signal</u>	<u>full name</u>	state definition
1	CLK1	CLOCK1	1.024 MHz AGC clock phase 2 (normally
		low)	
2	CLK2	CLOCK2	1.024 MHz AGC clock phase 2 (normally
		low)	
3	NSA	STANDBY ALLOWED	0=standby allowed
5	GENRST	GENERAL RESET (86)	0=clear the DSKY, OUT1, and OUT2.
6	WA11	WRITE OUT1 (76)	0=write into OUT1 from write bus
7	WA10	WRITE OUTO (75)	0 = write into OUTO (DSKY) from write bus
8	RA11	READ OUT1 (66)	0=output OUT1 register to read bus
9	RA4	READ INO (61)	0=output INO register to read bus
20	STBY	STANDBY	0=AGC is in the standby state

OUTPUTS (from IO):

PIN	<u>signal</u>	<u>full name</u>	state definition
40	OUT1_8	STANDBY ENABLED	1=standby enabled; works with STANDBY
			ALLOWED SWITCH

J104-IO: PROC-to-IO I/F

INPUTS (to IO):

PIN	<u>signal</u>	<u>full name</u>
1	WB_01	WRITE BUS 01
2	WB_02	WRITE BUS 02
3	WB_03	WRITE BUS 03
4	WB_04	WRITE BUS 04
5	WB_05	WRITE BUS 05
6	WB_06	WRITE BUS 06
7	WB_07	WRITE BUS 07
8	WB_08	WRITE BUS 08
9	WB_09	WRITE BUS 09
10	WB_10	WRITE BUS 10
11	WB_11	WRITE BUS 11
12	WB_12	WRITE BUS 12
13	WB_13	WRITE BUS 13
14	WB_14	WRITE BUS 14
15	WB_15	WRITE BUS 15
16	WB_16	WRITE BUS 16

state definition (Isb)

US (overflow) bit SG (sign) bit

OUTPUTS (from IO):

<u>PIN</u>	<u>signal</u>	<u>full name</u>
40	RB_01	READ BUS 01
39	RB_02	READ BUS 02
38	RB_03	READ BUS 03
37	RB_04	READ BUS 04
36	RB_05	READ BUS 05
35	RB_06	READ BUS 06
34	RB_07	READ BUS 07
33	RB_08	READ BUS 08
32	RB_09	READ BUS 09
31	RB_10	READ BUS 10
30	RB_11	READ BUS 11
29	RB_12	READ BUS 12
28	RB_13	READ BUS 13
27	RB_14	READ BUS 14
26	RB_15	READ BUS 15
25	RB_16	READ BUS 16
22	BUSY2	READ BUS BUSY
21	BUSY1	READ BUS BUSY
20	KB_STR	KEY STROBE

state definition (Isb)

US (overflow) bit SG (sign) bit

0=OUT registers output to read bus 0=INP registers output to read bus 1=key pressed strobe; to KEYRUPT. Key data is valid on the negative edge of KB_STR. Data is latched until the next keypress.

J106-IO

I/O side of MEM/IO I/F

IO DISPLAY/KEYBOARD (DSKY)

The keyboard/display portion of the IO module contains a keyboard, a bank of 7-segment displays, a panel of discrete indicator lamps, and a board of display drivers.

DSKY KEYBOARD

The DSKY has an 18-button keyboard:

0-9	Decimal (or octal) digits.
+	Plus sign for decimal entries.
-	Minus sign for decimal entries.
VERB	Tells the AGC the next 2 digits entered will be a VERB.
NOUN	Tells the AGC the next 2 digits entered will be a NOUN.
ENTER	Tells the AGC the data entry is finished.
CLEAR	Clears an error in entry.
ERR RST	Resets the OPR ERR alarm lamp

KEY REL Tells the AGC it can have control of the display. If the AGC wants control of the display, the KEL REL lamp will be flashing.

DSKY 7-SEGMENT DI SPLAY

- COMP ACTY A green indicator lamp that illuminates when the AGC is not idle. The lamp is controlled by the "dummy job", the lowest priority job in the AGC EXEC software's non-preemptive multitasking. When the dummy job is running, the lamp is extinguished because the AGC is idle. When the dummy job exits because there is a higher priority job running, the lamp illuminates. The light is driven by bit 1 of OUT1.
- PROG The 2-digit code for the current AGC program. Driven by OUTO.
- VERB The 2-digit code for the selected VERB. Verbs are actions; directives for the AGC to do something, such as loading or displaying memory data. Driven by OUTO.

NOUN The 2-digit code for the selected NOUN. The noun is the thing

acted upon by the verb. Nouns usually refer to memory locations, which are mapped to some AGC function. Driven by OUTO.

- R1 Register 1. The uppermost of the three 5-digit displays. Registers R1, R2, and R3 can display data in octal or decimal. Octal data is displayed without a sign. Decimal data is indicated by the presence of a + or - sign in front of the data. The displays I used in my replica cannot display a + sign, so I modified the logic slightly: decimal data is represented by a leftmost decimal point. Negative decimal numbers have a - sign and the decimal point; positive numbers just have the decimal point. Driven by OUTO.
- R2 Register 2. The middle of the three 5-digit displays. Driven by OUTO.
- R3 Register 3. The bottommost of the three 5-digit displays. Driven by OUTO.

IO DISCRETE INDICATORS

The DSKY has a panel of discrete indicator lamps (LEDs) to show status or caution and warning signals. Four of the lamps are driven by bits in output register 1 (OUT1). The parity alarm is driven by a signal from the MEM module. The standby lamp is driven by the standby state of the time pulse generator (TPG) in the CTL module.

	ACTY	CPR 5 P.D.	PROG
T)	5 FBY	KEY BEL	PARITY
::::			

- UPLINK ACTY Uplink activity. Illuminates when data is uplinked to the AGC. Driven by bit 3 (UPTL) of OUT1.
- OPR ERR Operator Error (also called CHECK FAIL). Illuminates when the AGC detects a data entry error. Driven by bit 7 of OUT1.
- KEY REL Key Release. Illuminated by the AGC when it needs to use the display, but the operator has taken control of it. The AGC causes this lamp to flash to signal the operator to release control of the display by hitting the KEY REL button. Driven by bit 5 (KEY RELS) of OUT1.
- PROG Program Alarm. Illuminates when the AGC encounters an error condition. Driven by bit 8 of OUT1.
- STBY Standby. Illuminates when the AGC is in the STANDBY mode.
- PARITY ALARM Illuminates when a parity error is detected during the memory cycle in the MEM module.

KBD (Keyboard)

The keyboard is an 18-pushbutton unit that generates and latches a 5-bit code. The code is given in "Keyboard and Display System Program for AGC (Program Sunrise)", A. I. Green and J. J. Rocchio, E-1574, MIT Instrumentation Laboratory, Cambridge, MA, 1964.

The keyboard codes and logic for generating the 5-bit signal is reproduced to the right. The "Key Name" column identifies the name of the keyboard key; "A" through "E" are the 5 logic signals for the 5-bit code, where "A" is the MSB.

$$A = abcd + efgh + o$$

$$B = 89cd + efgh$$

$$C = 4567 + fgh$$

$$D = 2367 + bdeg + h$$

$$E = 1357 + 9ace + h$$

	KEYNAME	ABCDE	
0	0	10000	١
1	1	00001	٢
2	2	00010	3
3	3	00011	4
4	4	00100	5
5	5	00101	٢
6	4	00110	7
ĩ	7	00111	8
8	8	01000	S
9	9	01001	10
à	VERB	10001	11
b	AR RST	10010	12
С	KEY REL	11001	13
d	+	11010	11
e	_	11011	15
f	ENTER	11100	14
9	CLEPPI	11110	17
2	NOUN	1111	18

The 18 switches in the keyboard feed into the combinational logic encoder which generates the 5-bit signal. The output of the encoder feeds into a 5-bit latch.

The keys are debounced by generating a "keypress" signal whenever a key is pushed. The keypress signal feeds through a "D" flip-flop clocked at around 100Hz. This samples the keypress signal every 10 mSec and latches the sample. The 10 mSec interval exceeds the contact bounce time of the keyboard switches.

To give the combinational logic time to settle before the keycode is latched, the output of the keypress D flip-flop is fed into an RC monstable. Latching occurs on the trailing edge of the one-shot pulse.

The keyboard codes are fed into "input register" INO, which is really just a buffer that gates the codes onto the read bus when the proper read signal is asserted. The original design also maps the keypress strobe which generates the keyboard interrupt (KEYRUPT) onto bit 6 of

the register, but I skipped this since there doesn't seem to be any practical reason for doing it and the COLOSSUS flight software doesn't seem to look at the field.

The STANDBY ALLOWED switch (CTL module) maps to be 14.

KBD INPUTS:

<u>I/F</u>	<u>signal</u>	<u>full name</u>	state definition
CLK:	CLK2	CLOCK 2	data transfer occurs on falling edge
CPM:	GENRST	GENERAL RESET	0=reset KBD register
KBD	OUTPUTS:		1 _{CK2} STR 14
<u>I/F</u>	<u>signal</u>	<u>full name</u>	state definition 30RST KB5 12
KBD:	KB_01	KEYBOARD BUS 01	Keyboard codes
	 КВ_05	KEYBOARD BUS 05	
INT:	KB_STR	KEY STROBE	1=key pressed strobe; to KEYRUPT. Key data is valid on the negative edge of KB_STR. Data is latched until the next keypress.

⁽KBD) \$1

INP (Input Registers)

INP INPUTS:

<u>I/F</u>	<u>signal</u>	<u>full name</u>	state definition			
CPM:	RA4 RA5 RA6 RA7	READ INO READ IN1 READ IN2 READ IN3	0=output INO register to 0=output IN1 register to 0=output IN2 register to 0=output IN3 register to	o rea o rea o rea o rea	d bu d bu d bu d bu	S S S
KBD:	KB_01 KB_05 NSA	KEYBOARD BUS 01 KEYBOARD BUS 05 STANDBY ALLOWED	0=standby allowed	10FF 20FF 40F	IN 2A4 2A5 2A6 2A7	P R16334 R1533332 R143332 R143332 R123333 R11020 R1000 R1000 R1000 R1000 R155 R155 R155
I NP <u>1/F</u>	OUTPUTS: signal	<u>full name</u>	state definition	12 F 13 F 14 F 15 F	(B5 (B4 (B3 (B2 (B1	R827 R726 R525 R422 R322 R222 R121

RBUS:		-AKRI KIT-
RB_01	READ BUS 01	L&ONSA BSY1 015
RB_14	READ BUS 14	
RB_15	READ BUS 15	US (overflow) bit for read/write bus
RB_16	READ BUS 16	SG (sign) bit for read/write bus
BUSY	READ BUS BUSY	0=output enabled to read bus

OUT (Output Registers)

OUT INPUTS:

<u>I/F</u> CLK:	<u>signal</u>	<u>full name</u>	state definition		
	CLK2	CLOCK 2	data transfer occurs on fa	alling edge	è
CPM:					
	RA11	READ OUT1	0=OUT1 to read bus	011	m I
	RA12	READ OUT2	0=OUT2 to read bus	10 DOT	01 - 82
	RA13	READ OUT3	0=OUT3 to read bus	GRST	01481
	RA14	READ OUT4	0=OUT4 to read bus	30 RA11	01380
	WA11	WRITE OUT1	0=load OUT1 from write bus	SCRA13 RA14	01177
	WA12	WRITE OUT2	0=load OUT2 from	9-0011	08 75
	WA13	WRITE OUT3	0=load OUT3 from write bus	100 WA12	0673 0572
	WA14	WRITE OUT4	0=load OUT4 from write bus	14 _{CK2}	03470 0369 0168
	GENRST	GENERAL RESET	0=clear DSKY, OUT1, and OUT2.		1966 1865 1764
WBUS	5:				15 63
	WB_01	WRITE BUS 01			13 62 11 61
	WB 14	WRITE BUS 14		24 1016	D1659
	WB_15	WRITE BUS 15	US (overflow) bit for write bus	25W15 26W14	R1558 R1457
	WB_16	WRITE BUS 16	SG (sign) bit for write bus	27W13 28W12 29W11 30W10 31W0	R1356 R1255 R1154 R1153 R1052
OUT	OUTPUTS:			32W8 33W7	R851 R750
<u>I/F</u>	<u>signal</u>	<u>full name</u>	state definition	354W5 364W4	R648 R548 R447
DSP:	OT0_01	OUTO REG 01	OUT0 register output to	38W3 39W1	R345 R245 R144

DSKY

 ...
 OTO_16
 OUTO REG 16

 OT1_01
 OUT1 REG 01

 OT1_03
 OUT1 REG 03

 OT1_05
 OUT1 REG 05

 OT1_07
 OUT1 REG 07

 OT1_08
 OUT1 REG 08

 OT1_09
 OUT1 REG 09

COMP panel indicator; 1=on UPTL panel indicator; 1=on KEY RELS panel indicator; 1=on CHECK FAIL panel indicator 1=on STBY panel indicator 1=on PROG ALM panel indicator 1=on 42

BSY20

RBUS:			
	RB_01	READ BUS 01	
	RB_14	READ BUS 14	
	RB_15	READ BUS 15	US (overflow) bit for read/write bus
	RB_16	READ BUS 16	SG (sign) bit for read/write bus
	BUSY	READ BUS BUSY	0=output enabled to read bus

DSP (Display)

The 7-segment DSKY display is driven by output register 0 (OUT0). Each 16-bit write to OUT0 writes data to a pair of 7-segment digits.

Four fields in OUTO are involved: The relay word (RLYWD; bits 12-15) field selects the pair of digits; the DSPH field (bits 6-10) contains the 5-bit numerical code for the left digit in the pair, and DPSL (bits 1-5) has the code for the right digit. The 1-bit DPSC (bit 11) field controls verb/noun flash (enables 1 Hz blinking of the VERB and NOUN digits) and the plus and minus signs to the left of the three 5-digit "registers" on the DSKY display.

Bits 15-12	Bit 11	Bits 10-6	Bits 5-1
<u>RLYWD</u>	<u>DSPC</u>	<u>DSPH</u>	DSPL
1011		MD1	MD2
1010	FLASH	VD1	VD2
1001		ND1	ND2
1000	UPACT		R1D1
0111	+R1S	R1D2	R1D3
0110	-R1S	R1D4	R1D5
0101	+R2S	R2D1	R2D2
0100	-R2S	R2D3	R2D4
0011		R2D5	R3D1
0010	+R3S	R3D2	R3D3
0001	-R3S	R3D4	R3D5

Each 7-segment digit on the display has a name (VD1, VD2, etc). The digits are physically arranged like this:

VD1	VD2 :	VERB		MD1 ND1	MD2 ND2	: major mode (PRO : NOUN
R1S	R1D1	R1D2	R1D3	R1D4	R1D5	: register 1
R2S	R2D1	R2D2	R2D3	R2D4	R2D5	: register 2
P3S	P3D1	R3D2	P3D3	R3D4	R3D5	: register 3

G)

In my assembled unit, the displays were in groups of 3, so some digits were not needed and left unwired.

The 5-bit codes that illuminate each digit in the display are given below; these are the codes sent to the DPSH and DPSL fields in OUTO.

In my implementation, I translate them into 4-bit binary-coded decimal representation (BCD) and feed them into a 74LS47 7-segment decoder. The mapping of the AGC digit to my

74LS47 decoder code is also given. The AGC digit codes are very peculiar; I suspect they were chosen for easy decoding into the 7-segment displays.

<u>Digit</u>	<u>AGC</u>	<u>74LS47</u>
Blank	00000	1111
0	10101	0000
1	00011	0001
2	11001	0010
3	11011	0011
4	01111	0100
5	11110	0101
6	11100	0110
7	10011	0111
8	11101	1000
9	11111	1001

My initial block diagram for the DSP logic is shown here. Two combinational logic code converters changes the 5-bit AGC code (DSPH, DPSL) into 4-bit BCD. The converted codes are latched into 4-bit registers by write pulses decoded by the relay word (RLYWD) decoder. Single bit latches hold the flash and sign bit codes transmitted by DSPC (bit 11 of OUTO).

Although I show separate decoders for each digit, I actually multiplexed the display to minimize the hardware. In this way, I only needed a pair of 74LS47 decoders; one for DSPH and the other for DSPL.

Some back-of-the-envelope bits and pieces of the logic design are also shown here. One "diagram" shows the verb/noun flash logic. Note the simple Karnaugh map (a graphical method for reducing boolean expressions), and a bit of bubble-pushing (a graphical technique for applying DeMorgan's Theorem to transform logic functions between AND and OR).

The other "diagram" shows the logic for the +/- signs on registers 1, 2, and 3. The displays I used in my replica cannot display a + sign, so I modified the AGC logic slightly: decimal data is represented by a leftmost decimal point. Negative decimal numbers have a - sign and decimal point; positive decimal numbers just have the decimal point.

The digit display portion of the DSKY uses green common-anode LED displays grouped in three's. Like most components, these were purchased from JAMECO. Here's the pinouts:

2 1d 3 DIGIT 1 CA (70°) 12 39 13 3C 14 3 dp cA 15. 36 14 3a 17. 3f. 18 DIGIT3CA . 19 19 DIGITZCA 20 2 b $\begin{array}{c}
 20 \\
 21 \\
 22 \\
 22 \\
 23 \\
 24 \\
 24 \\
 25 \\
 24 \\
 24 \\
 25 \\
 24 \\
 24 \\
 25 \\
 24 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 24 \\
 25 \\
 25 \\
 24 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\
 25 \\$ 5 3 à $\frac{15}{20} \quad \frac{1}{20}$ 28.19.

A panel of discrete indicator LEDs are mapped against bits in output register 1 (OUT1).

15	14	13	12	n	10	9	8	7	6	5	4	3	Z	I	
						PROG ALM	STBY	CHELK FAIL		KEY RELS		UPTL		COMP	00T <u>1</u>
							STAND- BY (PWROF	F)		KEY RELEASE		ACTIN		COMPUTER	~

DSP I NPUTS:

<u>I/F</u>	<u>signal</u>	<u>full name</u>	state definition	
CLK:	CLK2	CLOCK 2	data transfer occurs on	falling edge
PAR:	PARALM	PARITY ALARM	1=parity alarm	
INP:	OT0_01 OT0_15	OUTO REG 01 OUTO REG 15	OUTO register output to	D DSKY
	OT1_01 OT1_03	OUT1 REG 01 OUT1 REG 03	COMP panel indicator; UPTL panel indicator; 1=on	1=on DSP
	OT1_05	1_05OUT1 REG 05KEY RELS panel indicator; 1=on1_07OUT1 REG 07CHECK FAIL panel indicator 1=on		
CPM:	OT1_08 OT1_09	OUT1 REG 08 OUT1 REG 09	STBY panel indicator 1=on PROG ALM panel indicator 1=on	1011 1000 1009 1000 1000 1000 11005 1
	WA10	WRITE OUTO	0=write into OUT0 (DSKY) from write bus	1501 1710
	GENRST	GENERAL RESET	0=clear the DSKY.	18 19 19 19 19 19 19 19 19 19 19 19 19 19
DSP	OUTPUTS:			24 PARALM 28
<u>I/F</u>	<u>signal</u>	<u>full name</u>	state definition	270RST

none.

DISPLAY (DSP) \$11

Fabrication

The IO module is (2) 13"x5" circuit boards, and 1 DSKY panel containing a display driver board, a 7-segment display board, a discrete LED indicator board, and a keyboard.

Module Rack

The module framework is designed to resemble a relay rack, but scaled to fit the circuit board dimensions. It is constructed out of 1"x2" pine and spray-painted semigloss gray.

Circuit boards are mounted to the rack by 2 phillips screws at either end. Nylon spacers (1/4") are used as standoffs to hold the board edges above the rack. The boards are mounted so the chips are in the back and the pins are wiring are visible from the front.

Power is distributed by 2 heavy aluminum bus bars mounted vertically, one per side, on the back of the module. Machine screws are mounted through the bus bars at evenly-spaced intervals to provide connection points for the boards.

Solid copper wire (24 gauge) connects the boards to the bus bars. Ring terminals are

used on the bus bar side of the connection. On the circuit board size, the wires are soldered directly to the supply rails.

Materials were purchased from Home Depot, ACE Hardware, and Radio Shack.

Circuit Boards

The circuit boards are 13"x5" general purpose prototyping boards, epoxy glass with doubleside plated through pads on 0.1" centers (JAMECO 21477CL).

ICs are mounted in level 3 machine tooled wire-wrap sockets: 8, 14, 16, 20, 24, and 28 pin (JAMECO). Each socket has the pin-out labeled with a wire-wrap socket ID marker, which slips onto the socket before wrapping (JAMECO). The part number is written onto the ID marker.

Sockets are arranged in 4 horizontal rows on each board, with about 10 sockets per row.

Power is distributed on the back-side of each board by bare 24-gauge solid copper wire supply rails soldered at equal intervals to Klipwrap terminals: 3-prong terminals with a square tail for wire-wrapping (JAMECO 34163CL). A +5V rail runs above each row of sockets and a ground rail runs below. Each rail connects directly to the aluminum module power bus using a ring tail connector.

On the pin side of the board, all connections are made with 30 AWG Kynar wire-wrap wire (JAMECO). Red wire is used for direct connections to the +5V supply rail. Black wire is used for direct connections to ground. White wire is used for everything else.

Power connections from the supply rails to each ICs are double-wrapped. Bypassing capacitors (.1 uf disc) are soldered across the supply rails at the Klipwrap terminals; about 1 capacitor for every 2 IC packages.

All connections were stripped and hand-wrapped using a Radio Shack hand-wrap tool. As each connection was made, the corresponding line on the schematic was marked with a colored highlighter.

DIP resistor networks (JAMECO) plugged into 20-pin wire-wrap sockets were used as current limiting resistors for the panel indicators.

IO Circuit Board A

The A board contains the module interface buffers, input and output registers, and the latches that hold the BCD codes for the 7-segment displays.

IO Circuit Board B

The B board contains keyboard and display logic. The 40-pin IDE connectors that interface to the other modules are visible at the bottom. The 5 red LEDs show the keyboard code latched into the KBD output register.

IO Device Driver Board C

The C board contains driver transistors and their associated resistors. The transistors are plastic medium-power complementary silicon: NPN transistors are TIP102, PNP transistors are TIP107. Viewed from the front of the TO-220 case, the base (1) is to the left, collector (2) in the middle, and emitter (3) to the right. The metal tab (4) is the collector.

An empty space at the top of the IO module rack was filled with a plexiglass panel listing verb and noun codes:

Parts (ICs)

IC's, sockets, PCB's, resistors, capacitors, wire-wrap wire were purchased from JAMECO. IDE wire-wrap sockets were from DigiKey. Wire ties, wire-wrap tools, and copper wire were from Radio Shack. IDE ribbon cables were purchased from an online computer supplier.

74LS00	(13)	U27, U27B, U27C, U15C, U15B, U15, U14C, U14B, U14, U29D, U29C,
741 \$02	(3)	U25 U25 U33C
74LS04	(27)	U40E, U40D, U38D, U38C, U40F, U40C, U39E, U39D, U39C, U39B,
		U41D, U40B, U37F, U39F, U12, U12B, U12C, U12D, U12E, U11F, U11E,
		U11D, U11C, U11B, U11, U39A, U37
74LS06	(41)	U26F, U26E, U26D, U26C, U26B, U26, U20, U18D, U18C, U18B, U18,
		U20C, U17E, U17D, U20B, U16F, U16E, U9, U9B, U9C, U9D, U9E, U9F,
		U10, U10B, U10C, U10D, U7, U7B, U7C, U7D, U7E, U7F, U8, U20,
		U19F, U19E, U19D, U19C, U19B, U19
74LS08	(1)	U28
74LS10	(1)	U4
74LS20	(5)	U2, U3, U5, U31, U32
74LS27	(2)	U35C, U36
74LS47	(4)	U46, U47, U48, U45
74LS74	(1)	U1
74LS86	(1)	U24C
74LS112	(5)	U6A, U23B, U22B, U21B, U30
74LS138	(9)	U50, U67, U68, U69, U70, U73, U74, U75, U76
74LS148	(4)	U65, U66, U71, U72
74LS154	(1)	U51
74LS161A	(1)	U49
74LS244	(10)	U101, U100, U52, U53, U77, U78, U81, U82, U83, U84
74LS273	(3)	U79, U80, U44
74LS374	(11)	U54, U55, U56, U57, U58, U59, U60, U61, U62, U63, U64
GREENCA	(21)	DISP1, DISP2, DISP3, DISP4, DISP5, DISP6, DISP7, DISP8, DISP9,
		DISP10, DISP11, DISP12, DISP13, DISP14, DISP15, DISP16, DISP17,
	()	DISP18, DISP19, DISP20, DISP21
555	(3)	085, 042, 043
NPN3	(35)	Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q15, Q16, Q17, Q18, Q19, Q20, Q21,
		Q32, Q33, Q34, Q35, Q36, Q37, Q38, Q39, Q40, Q41, Q42, Q43, Q44,
	(00)	Q45, Q8, Q9, Q10, Q11, Q12, Q13, Q14
PNP3	(22)	022, 023, 024, 025, 026, 027, 028, 029, 030, 031, 046, 047, 048,
		U49, U50, U51, U52, U53, U54, U55, U56, U57

Power Budget

	qty	<u>mA (ea)</u>	mA (tot)
74LS00	13	2.4	31.2
74LS02	3	2.4	7.2
74LS04	27	3.6	97.2
74LS06	41	3.6	147.6
74LS08	1	4.4	4.4
74LS10	1	1.8	1.8
74LS20	5	1.2	6.0

74LS2	7	2	3.4	6.8
74LS47		4	7.0	28.0
74LS7	4	1	4.0	4.0
74LS8	6	1	6.1	6.1
74LS1	12	5	4.0	20.0
74LS1	38	9	6.3	56.7
74LS1	48	4	12.0	48.0
74LS1	54	1	6.2	6.2
74LS1	61	1	19.0	19.0
74LS2	44	10	32.0	320.0
74LS2	73	3	17.0	51.0
74LS3	74	11	27.0	297.0
555	3	3.0	9.0	
GREEM	NCA	21	140.0	2940.0
LED	25	20.0	500.0	

4.6

Amps total Amps (excluding single LEDs) 4.1