Block I Apollo Guidance Computer (AGC)

How to build one in your basement

Part 4: Memory (MEM) Module

John Pultorak December, 2004

Abstract

This report describes my successful project to build a working reproduction of the 1964 prototype for the Block I Apollo Guidance Computer. The AGC is the flight computer for the Apollo moon landings, and is the world's first integrated circuit computer.

I built it in my basement. It took me 4 years.

If you like, you can build one too. It will take you less time, and yours will be better than mine.

I documented my project in 9 separate .pdf files:

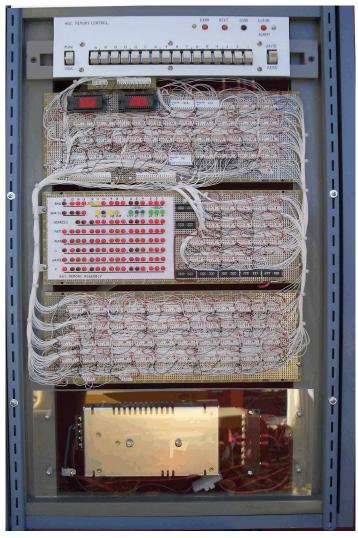
- Part 1 Overview: Introduces the project.
- Part 2 CTL Module: Design and construction of the control module.
- Part 3 PROC Module: Design and construction of the processing (CPU) module.
- Part 4 MEM Module: Design and construction of the memory module.
- Part 5 IO Module: Design and construction of the display/keyboard (DSKY) module.
- Part 6 Assembler: A cross-assembler for AGC software development.
- Part 7 C++ Simulator: A low-level simulator that runs assembled AGC code.
- Part 8 Flight Software: My translation of portions of the COLOSSUS 249 flight software.
- Part 9 Test & Checkout: A suite of test programs in AGC assembly language.

Overview

The Memory Module (MEM) has 5 subsystems: MMI, ADR, EMM/FMM, MBF, and PAR

MMI (Memory Module external Interface)

The MMI interfaces other memory module subsystems (ADR, EMM/FMM, MBF, and PAR; described below) to external AGC modules. 40-pin IDE connectors interface to the PROC and CTL modules. Inputs from those modules are buffered to 1 LSTTL load. A 1-pin connector interfaces to the IO module.


EMM/FMM (Eraseable/Fixed Memory)

The EMM/FMM is the AGC memory. AGC memory is 16-bit words, organized into 1024 word banks. The lowest bank (bank 0) is erasable memory (EMM), originally implemented as core, but implemented here as RAM. All banks above bank 0 are fixed memory (originally implemented as rope core, but implemented here as EPROM). The Block I AGC initially had 12K words of fixed memory. This implementation has 15K.

The MSB (bit 16) in memory is an odd parity bit. The lower 15 bits hold instructions or data.

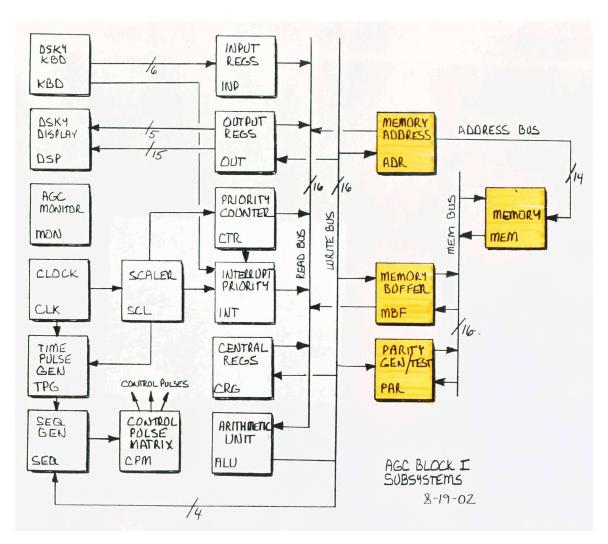
MBF (Memory Buffer Register)

The MBF has the 16-bit memory buffer

register which holds 16-bit data words moving to and from memory. This is also called the G register.

The AGC transfers data to and from memory through the G register during the "memory cycle." The memory cycle takes 12 timing pulses (11.72 microseconds). During AGC operation, data words cycle continuously from memory to the G register and then back again to memory.

There are four locations in eraseable memory, at addresses 20-23 (octal), dubbed "editing locations" because whatever was stored there would emerge shifted or rotated by one bit position. This shifting is performed in the MBF.

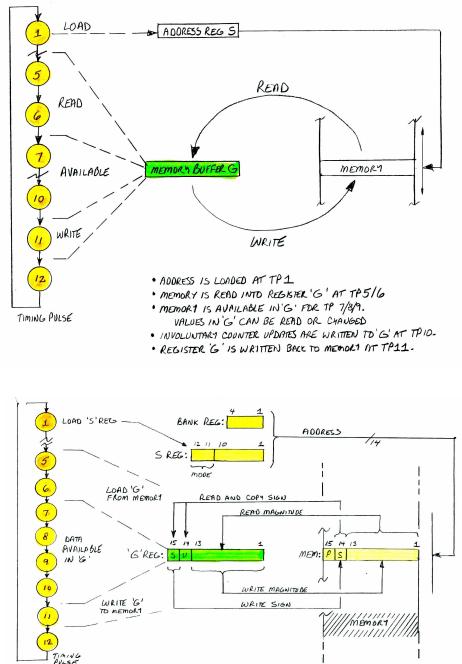

PAR (Parity Generate and Test)

The PAR generates and tests the memory parity bit. The lower 15 bits of each memory word

hold AGC instructions or data. Each word is protected by a 16th "odd parity" bit. This bit is set to 1 or 0 by a parity generator circuit so a count of the 1's in each memory word always produces an odd number. A parity checking circuit tests the parity bit during each memory cycle; if the bit doesn't match the expected value, the memory word is assumed to be corrupted and a PARITY ALARM panel light illuminates on the IO module.

ADR (Memory Address)

The ADR constructs the AGC memory address. The address is formed from the S register which holds the lower 12-bits that directly address the lowest 4K of memory, and the BANK register, which selects higher memory banks when addressing is in the fixed-switchable mode.

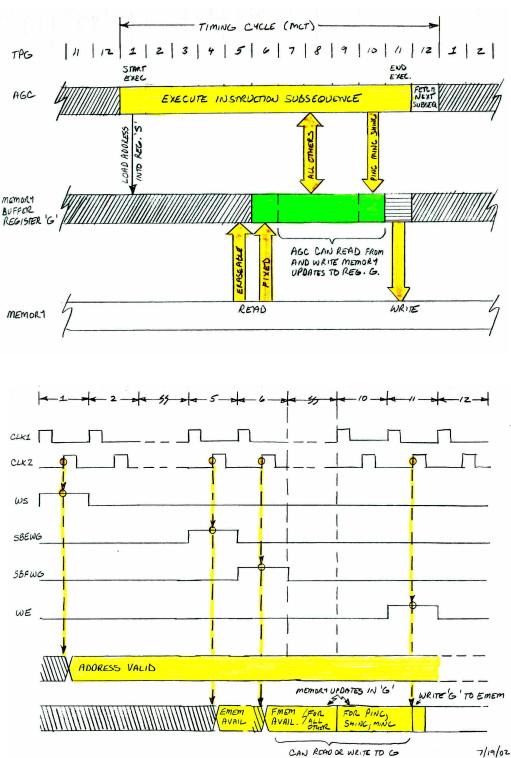

The AGC transfers data to and from memory through the G register in a process called the "memory cycle." The memory cycle takes 12 timing pulses (11.72 microseconds). The cycle begins at timing pulse 1 (TP1) when the AGC loads the memory address to be fetched into the S register in ADR. Memory hardware retrieves the data word from memory at the address specified by the S register. Words from erasable memory are deposited into the G register by timing pulse 6 (TP6); words from fixed memory are deposited by timing pulse 7.

The retrieved memory word is then available in the G register for AGC access during timing pulses 7 through 10. After timing pulse 10, data in the G register is written back to memory.

The memory address is formed from the 12-bit S register and the 4-bit BANK register. Memory in the lowest 4 1K banks is directly addressed by the S register. The higher 1K banks (5-12) are address through the bank register as described in the ADR subsystem section of this document.

The high-order bit in memory (bit 15) is an odd parity bit. If the memory word is a data word, the 14th bit is the sign, and bits 13 through 1 hold the magnitude. The number representation is 1's complement.

The first half of the memory cycle copies data from memory to the G register, The sign bit in memory

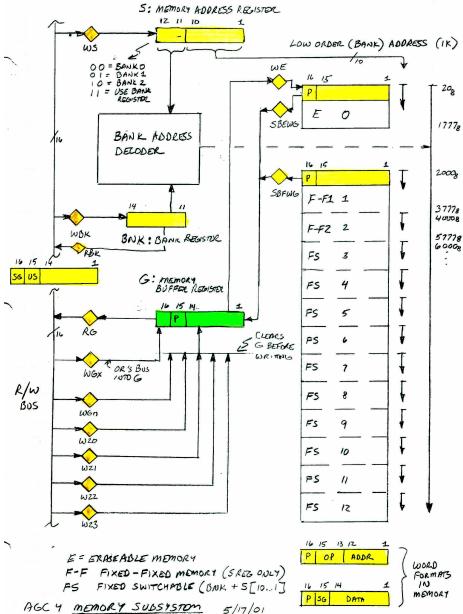

(bit 14) is copied to bits 15 and 14 of the G register. Bits 13 through 1 in memory are

copied to bits 13 through 1 in G. This is performed in the MBF and EMM/FMM subsystems. The parity bit (bit 16 in memory) is read by the PAR subsystem and tested against parity generated on the memory word copied into G. If the parity bits fail to match, a parity alarm is generated.

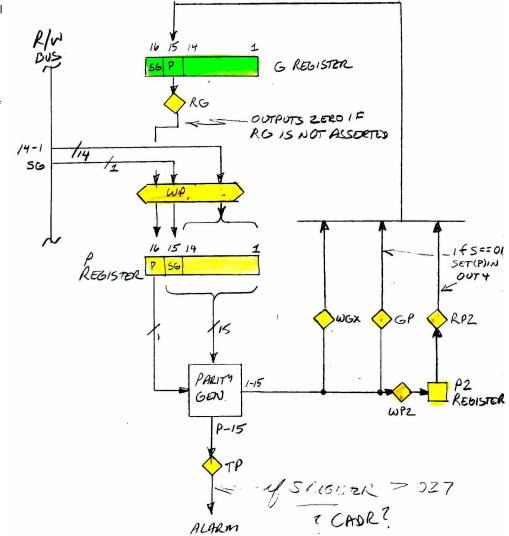
The 14th bit in the G register (and the central registers in the AGC) is called the Uncorrected Sign (US). This extra sign bit is used as an overflow indication in multi-word operations. Normally, the Sign and Uncorrected sign should agree. When overflow or underflow conditions occur, both signs will disagree, and are reconciled by software in an operation at the end of a long string of multi-word computations.

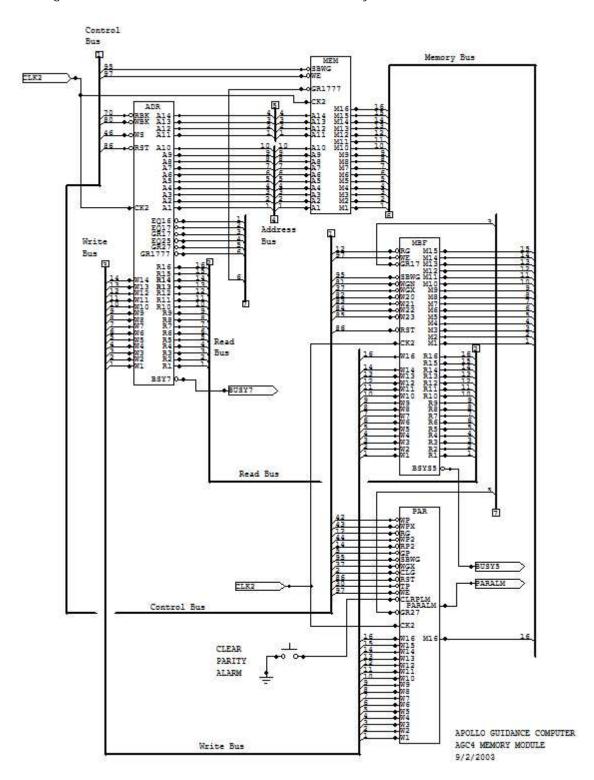
At the end of the memory cycle, the G register is copied back to memory. The sign bit in G (bit 15) is written to the sign bit (bit 14) in memory. Bits 13 through 1 in G are written to bits 13 through 1 in memory. A new odd parity bit is computed in the PAR subsystem and written to the 16th bit in memory.

These diagrams show the timing of the memory cycle. The top chart is a little more conceptual; the bottom chart shows the clock cycles and control pulses directly associated with reading eraseable memory (SBEWG) or fixed memory (SBFWG) to the G register (the 'WG' part means 'write to G'). The WE pulse writes G back to memory.


CLK1 steps the sequencer in the CTL module that enables the control signals. The signals have time to settle between CLK1 and CLK2. Data transfer occurs on CLK2.

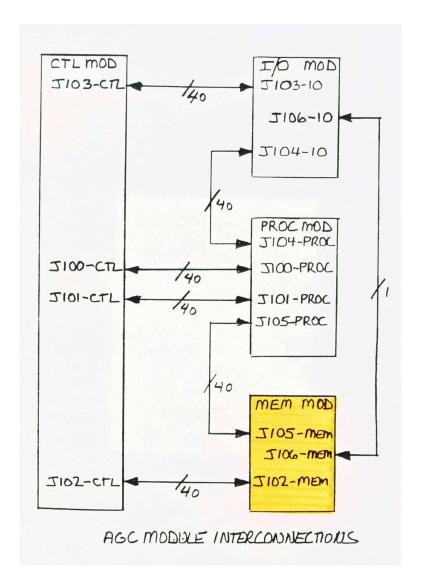
^{7/19/02}


This is a functional diagram of the ADR, EMM/FMM, and MBF subsystems in the MEM module.


The diagram is mine, but the style is borrowed from original AGC documentation: control signals are represented by diamonds. The arrows show the direction of data flow. When a control signal is asserted, data is allowed to flow through the diamond. For example, when WE is asserted, the contents of the G register are written into eraseable memory (bank 0).

Note the different formats for data and instruction word in memory, shown at the bottom of the diagram.

This is a functional diagram of the PAR subsystem in the MEM module. The diagram was developed during the early stages of my AGC architecture analysis in 2001.



MEM Internal Subsystem Interconnections This diagram shows internal interconnections for subsystems in the MEM module.

MEM Module External Interfaces

The MEM module interfaces to the PROC and CTL modules through 40-pin IDE ribbon cables.

J102-CTL: CTL-to-MEM I/F J102 is a 40-pin IDE cable that connects the MEM module to the CTL module.

INPUTS (to CTL):

<u>PIN</u>	<u>signal</u>	<u>full name</u>	state definition
1	WE	WRITE EMEM (97)	0=Write E-MEM from G
2	SBWG	WRITE G (95)	0=Write G from memory
3	GENRST	GENERAL RESET (86)	0=General Reset
4	W23	WRITE ADDR 23 (85)	0=Write into SL
5	W22	WRITE ADDR 22 (84)	0=Write into CYL
6	W21	WRITE ADDR 21 (83)	0=Write into SR
7	W20	WRITE ADDR 20 (82)	0=Write into CYR
8	WGn	WRITE G NORMAL (81)	0=Write G (normal gates)
9	WBK	WRITE BNK (80)	0=Write BNK reg
10	RBK	READ BNK (70)	0=Read BNK reg
11	WS	WRITE S (46)	0=Write S
12	WP2	WRITE P2 (44)	0=Write P2
13	WPx	WRITE P NO RESET (43)	0=Write P (do not reset)
14	WP	WRITE P (42)	0=Write P
15	WGx	WRITE G NO RESET (37)	0=Write G (do not reset)
16	TP	TEST PARITY (30)	0=Test parity
17	RP2	READ PARITY 2 (14)	0=Read parity 2
18	RG	READ G (12)	0=Read G
19	GP	GEN PARITY (5)	0=Generate Parity
20	CLG	CLR G (2)	0=Clear G
21	CLK2	CLOCK2	1.024 MHz AGC clock phase 2 (normally
			low)
22	CLK1	CLOCK1	1.024 MHz AGC clock phase 2 (normally
0.0	NDUDGT		low)
23	NPURST	POWER UP RESET	0=reset, 1=normal operation.
24	SWCLK	DEBOUNCE CLOCK	low freq clk for switch debounce (not used)
25	FCLK	CLOCK MODE	1=free-running clk mode;

OUTPUTS (from CTL):

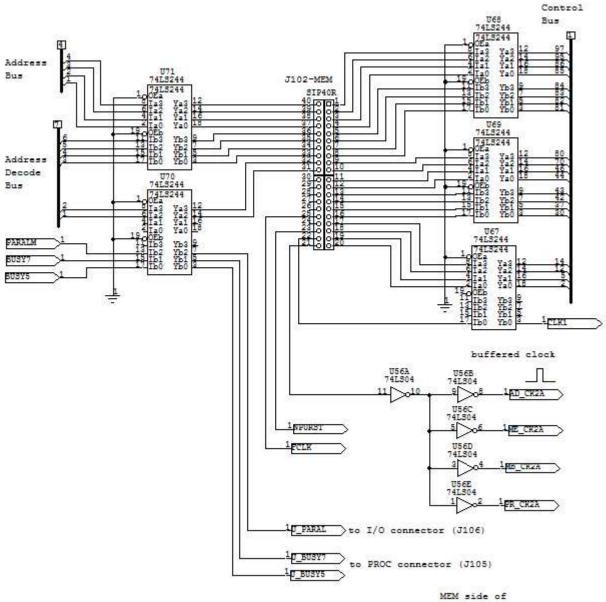
PIN	<u>signal</u>	<u>full name</u>
31	EQU_16	ADDRESS = 016 (1)
32	EQU_17	ADDRESS = 017 (2)
33	GTR_17	ADDRESS > 017 (3)
34	EQU_25	ADDRESS = 025 (4)
35	GTR_27	ADDRESS > 027 (5)
36	GTR_1777	ADDRESS > 01777 (6)
37	AD_1	ADDRESS (1)
38	AD_2	ADDRESS (2)
39	AD_3	ADDRESS (3)
40	AD_4	ADDRESS (4)

state definition 0=CADR in register S = 016

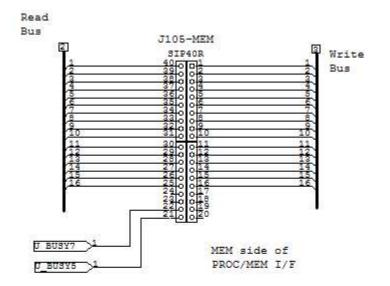
0 = CADR in register $S = 0.10$
O = CADR in register $S = 017$
0 = CADR in register S > 017
O = CADR in register $S = 025$
0 = CADR in register S > 027
0 = CADR in register S > 01777
where AD_4 is MSB, AD_1 is LSB

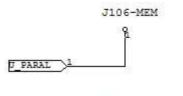
J105-MEM: MEM-to-PROC I/F J102 is a 40-pin IDE cable that connects the MEM module to the PROC module.

INPUTS (to MEM):

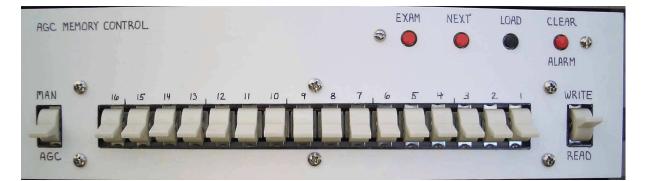

PIN	<u>signal</u>	<u>full name</u>
1	WB_01	WRITE BUS 01
2	WB_02	WRITE BUS 02
3	WB_03	WRITE BUS 03
4	WB_04	WRITE BUS 04
5	WB_05	WRITE BUS 05
6	WB_06	WRITE BUS 06
7	WB_07	WRITE BUS 07
8	WB_08	WRITE BUS 08
9	WB_09	WRITE BUS 09
10	WB_10	WRITE BUS 10
11	WB_11	WRITE BUS 11
12	WB_12	WRITE BUS 12
13	WB_13	WRITE BUS 13
14	WB_14	WRITE BUS 14
15	WB_15	WRITE BUS 15
16	WB_16	WRITE BUS 16

state definition (Isb)


US (overflow) bit SG (sign) bit


OUTPUTS (from MEM):

<u>PIN</u>	<u>signal</u>	<u>full name</u>	state definition
40	RB_01	READ BUS 01	(Isb)
39	RB_02	READ BUS 02	
38	RB_03	READ BUS 03	
37	RB_04	READ BUS 04	
36	RB_05	READ BUS 05	
35	RB_06	READ BUS 06	
34	RB_07	READ BUS 07	
33	RB_08	READ BUS 08	
32	RB_09	READ BUS 09	
31	RB_10	READ BUS 10	
30	RB_11	READ BUS 11	
29	RB_12	READ BUS 12	
28	RB_13	READ BUS 13	
27	RB_14	READ BUS 14	
26	RB_15	READ BUS 15	US (overflow) bit
25	RB_16	READ BUS 16	SG (sign) bit
22	BUSY7	READ BUS BUSY	0=BNK register output to read bus
21	BUSY5	READ BUS BUSY	0=G register output to read bus

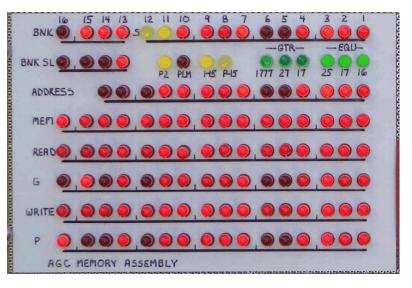


CTL/MEM I/F

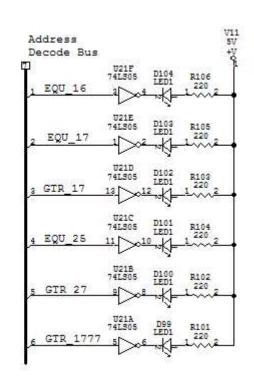
MEM side of MEM/IO I/F

MEM CONTROL PANEL SWITCHES

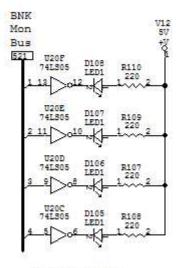
AGC/MANUAL	Permits memory to be examined and loaded when the switch is in the MANUAL position and the AGC is halted.
EXAM	Loads the address counter with the contents of the switch register. To work, the following switches must also be set: AGC/MANUAL> MANUAL
NEXT	Steps the address to the next location. To work, the following switches must also be set: AGC/MANUAL> MANUAL
READ/WRITE	Displays memory contents in the READ position; displays switch register contents in the WRITE position.
LOAD	Load memory with data manually entered into the switch register. To work, the following switches must also be set prior to LOAD: CLOCK CONTROL (on CTL module)> STEP; AGC/MANUAL> MANUAL; READ/WRITE> WRITE
CLEAR PARITY	Clears a parity alarm indication by resetting the parity alarm (PALM) register. The parity alarm indicator is on the IO module.


MEM CONTROL SWITCH CONNECTIONS

PIN	<u>signal</u>	state definition
1	READ/WRITE	GND=read
2	AGC/MANUAL	GND=manual
3	EXAM	GND=examine
4	NEXT	GND=examine next
5	CLEAR PARITY	GND=clear
6	LOAD	LOAD switch contact
7	LOAD	LOAD switch contact


PIN	<u>signal</u>	<u>full name</u>	state definition
1	D1	DATA1	LSB on switch bus 101
2	D2	DATA2	
3	D3	DATA3	
4	D4	DATA4	
5	D5	DATA5	
6	D6	DATA6	
7	D7	DATA7	
8	D8	DATA8	
9	D9	DATA9	
10	D10	DATA10	
11	D11	DATA11	
12	D12	DATA12	
13	D13	DATA13	
14	D14	DATA14	
15	D15	DATA15	
16	D16	DATA16	LSB on switch bus 101
17	GND	GND	

MEM INDICATORS


These indicator lamps show the current state of all registers and some additional, important logic signals produced by the MEM module. AGC numbers are represented in octal, so all register lamps are in groups of three. At the time the photo was taken the AGC was running the COLOSSUS 249 flight software load, executing Verb 16, Noun 36: a monitor verb which displays the AGC real time clock.

5 Mon Bus		V14 5V +V
522 U24D 74L305 1-9		R126 220 1
U24C 74L505 2_5		R125 220 1 220 2
024B 74L505 3_3		R123 220 12
024A 74L505 4-1		R124 220 1
U23P 74L305 5 13		R122 220 1
U23E 74L805	D119 LED1	R121 220 1
U23D 74L505 79		R119 1220 1
U23C 74L305 8 5		R120 220 1 220 2
U23B 74L305		R118 220 1
U23A 74L305		R117 220 1
U22F 74LS05 1113		R115 220 1
U22E 74LS05	D113 LED1	R116 220 1

1 022A 741505	Dii2 LEDi	R114
U22B 74LS05		R113 1220
U22C 74L305		R111 1220 1,000
U22D 74L305	D109 LED1	R112 220

MEM ASSEMBLY INDICATORS #1

ess nsion	V4 5V +V	Mem Bus	5V +V	Read Bus			V7 5V +V
9 018A 74LS05 LE	4 R16 01 220 1 220 2	U17F 74L305 1 12 12	200 R32 ED1 220 2		16 R48 D1 220	Bus 513 U12D 74L305	D62 R64 LED1 220
		2 11 017E	D29 R31 ED1 220 C 1 220 2		15 R47 D1 220	741305 2-1_02	D61 R63 LED1 220
U18C 74L305 LE 3 13 12 12	2 R13	017D 74L505 1 3 9 08	16 %		4 R45 D1 220	741305	D60 R61 LED1 220
74L305 D1 74L305 LE 4 11		017C 74L305 I 4 5 06	D27 R40 LED1 220 K 1 220 2		13 R46 D1 220	U12A 74L305	D59 R62 LED1 220
U18E 74L305 LE 5 9 8	01 220	0178 74L805	D26 R28 ED1 220 C	74L305 D 74L305 LE	12 R44 D1 220	741305 5 9 8	D58 R60 LED1 220 2
	9 R11 D1 220	017A 74LS05	D25 R27 LED1 220 LL 1 220 2	013D 74L305 De 6 11 010	41 R43 D1 220	011E 74L305	D57 R59 LED1 220
U19A 74L305 LE 7 2	8 R9 D1 220	74L305 1 713 012	D24 R25 LED1 220 K 1 220 2		`	U11D 74L305 7 - 2 - 204	D56 R57 LED1 220
	7 R10 D1 220	016E 74L305 8 11	D23 R26 LED1 220 LED1 220 2			74L305	D55 R58 LED1 220
U19C 74L305 LE 9 13	6 ра	016D 74LS05 j	D22 LED1 220 K↓ 12	014A 74LS05 LE	-	U11B 74L305 9 13 13	D54 R56 LED1 220 2
U19D 74L305 LE 1011	01 220	016C 74L305		74LS05 LE	ŝ.	U11A 741305	D53 R55 LED1 220 2
U19E 74L305 LE	4 R5	U16B 74LS05		74L305 LE	16 R37 D1 220 1 220 2	74L305	D52 R58 LED1 220
U19F 74L305 LE	25	111.63	D19 ED1 220 CED1 220 2	74LS05 LE	15 R38 D1 220	74L305	D51 R54 LED1 220
U20A 74L305 LE	2 01 R4 1 220 1 1 220	110000 1	D18 R20 LED1 220 K	014E 74LS05 LE	14 016	U10D 74L305	D50 R52 LED1 220 2
14 1 02 14		74L305 1411	D17 R19 ED1 220	U14F 74L305 LE	S	U10C 74L305	D49 R51 LED1 220 2
MEM ASSEMBL		74L305 I	D16 R17 ED1 220	U15A 74L305 D2 15 3	12 R33 D1 220 2	U10B 74L305 1512 12	D48 R49 LED1 220
INDICATORS	4 4	015C 74L505 1 16 5 6	D15 B18 ED1 220	U15B 74LS05 LE 16 1	1 R34 D1 220 1 1 220 2	U10A 74L305	D47 R50 LED1 220 2

1	ionitor	G SV Mon	V10 5V
	Bus [1021] U9B 74LS05 D82 R84 74LS05 LED1 220 1-9 0	+V Bus 1 [622] U4A 741.305 I 1 3 04	D98 R100 ED1 220
	74L305 D81 R83 2 5 06 N = 1 220	74L305 I 2_1	197 R99 ED1 220 K
	74LS05 D80 R81 220 3 3 4 4 4 220	^{04C} 74L505 1 <u>3 13</u> 012	D96 R97 ED1 220 K 1 220 2
	UBE D79 R82 74L305 LED1 220 4 1 220		D95 R98 ED1 220 SK
	74L305 D78 R80 5 12 012 NJ 220	^{U4E} 74L305 I 5 9 08	D94 R96 ED1 220
	74L205 D77 R79 26 11 01 1220 20 10 10 10 10 10		D93 R95 ED1 220 EQ1 1002
	74L305 D76 R77 LED1 220 7 9 8 5 LED1 220 2	74L305 I 74L305 I	D92 R93 ED1 220 2
	74LS05 D75 R78 LED1 220 8 5 6 5 220 2	^{U5B} 74L305 1 <u>B 1</u> 02	D91 R94 ED1 220 SK 1002
	9 2 01 01 01 01 01 01 01 01 01 01 01 01 01	2 12 012	D90 R92 LED1 220 SKJ=1~~~2
	10 1 220 10 1 200 10 10 100 10 100 10 10 100 10 1000 10 1000 10 1000 10 1000 10 1000 10 1	74L205 I	D89 R91 220 2 s{ − 1 ~~~ 2
	1112 012 012 012 012 012 012 012 012 012	11 9 08	D88 R89 220 220
74L305 D66 R68 LED1 220 PR_P2 1 13 12 12 12 12 12 12 12 12 12 12 12 12 12	1211 1211 1211 1211 1211 1210 10 1210 1220 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 10	^{USP} 74L305 I <u>12 5</u> 06	D87 R90 ED1 220 L 1 220 2
74L305 LED1 220 PARALM 1 11 10 10 10 10 20	13 9 00 00 00 00 00 00 00 00 00 00 00 00 0	13 3 04	D86 R88 ED1 220 K
74LS05 D64 R65 LED1 220 PR_1-15 P 8 5	^{U7A} 74L305 LED1 220 14 5 ∞6 v 1 220	74L305 I	D85 R87 ED1 220
74L305 D63 R66 220 PR_F-15	15 2 068 R69	PR_G15 1 12 012,	D84 R85 LED1 220 SKJ=1
MEM ASSEMBLY INDICATORS \$3	16 1 1 220 2 1 1 220 2	74L305 I	D83 R86 ED1 220 C

ADR (Memory Address)

The AGC has a 14-bit address range. Memory address is selected by the 12-bit S register and the 4-bit BANK register.

- S: the 12-bit memory address register, which holds the lower portion of the memory address.
- BANK: the 4-bit memory bank register, which selects the memory bank when addressing is in the fixed-switchable mode.

Each AGC instruction has a 12-bit address field. The lower bits (1-10) address memory inside each bank. Bits 11 and 12 select the bank:

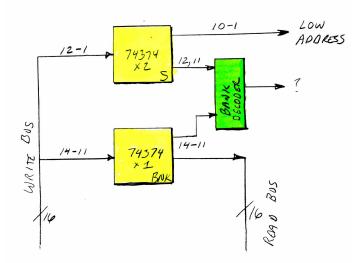
- 00: selects the erasable memory bank; the BANK register is ignored.
- 01: selects the lowest bank (bank 1) of fixed memory; the BANK register is ignored.
- 10: selects the next bank (bank 2) of fixed memory; the BANK register is ignored.
- 11: selects the BANK register, which is used to address any bank above 2. If the BANK register contains 0, 1, or 2, the BANK register is overridden and bank 3 is selected.

Banks 1 and 2 are called "fixed-fixed" memory, because they are always available, regardless of the contents of the BANK register. Banks 3 and above are called "fixed-switchable" because the selected bank is determined by the BANK register.

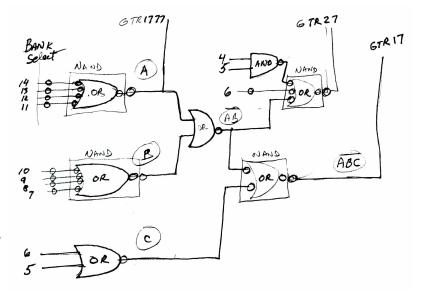
Type:

E Eraseable Memory

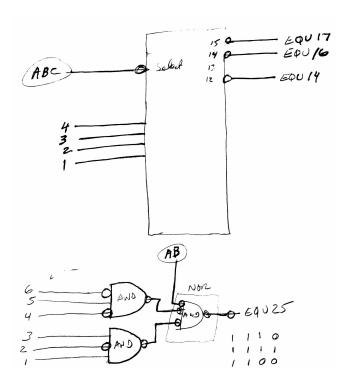
FF Fixed-Fixed Memory

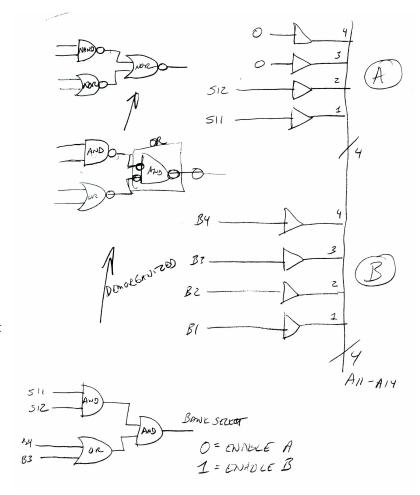

FS Fixed-Switchable Memory

				S Regi	ster:
14-bit		BANK		bits	12-bit
<u>address</u>	<u>bank</u>	<u>type</u>	<u>Reg</u> .	<u>12,11</u>	<u>address</u>
00000 - 01777	0	(E)	ignored	00	0000 - 1777
02000 - 03777	1	(FF)	ignored	01	2000 - 3777
04000 - 05777	2	(FF)	ignored	10	4000 - 5777
06000 - 07777	3	(FS)	0000 - 0011	11	6000 - 7777
10000 - 11777	4	(FS)	0100	11	6000 - 7777
12000 - 13777	5	(FS)	0101	11	6000 - 7777
14000 - 15777	6	(FS)	0110	11	6000 - 7777
16000 - 17777	7	(FS)	0111	11	6000 - 7777
20000 - 21777	8	(FS)	1000	11	6000 - 7777
22000 - 23777	9	(FS)	1001	11	6000 - 7777
24000 - 25777	10	(FS)	1010	11	6000 - 7777
26000 - 27777	11	(FS)	1011	11	6000 - 7777
30000 - 31777	12	(FS)	1100	11	6000 - 7777


BAN	< regist	er (B)		<u>+ S I</u>	register (S)	Deco	des to a	ddress	<u>:</u>
<u>B4</u>	<u>B3</u>	<u>B2</u>	<u>B1</u>	<u>S12</u>	<u>S11</u>	A14	A13	A12	A11
Х	Х	Х	Х	0	0	0	0	0	0
Х	Х	Х	Х	0	1	0	0	0	1

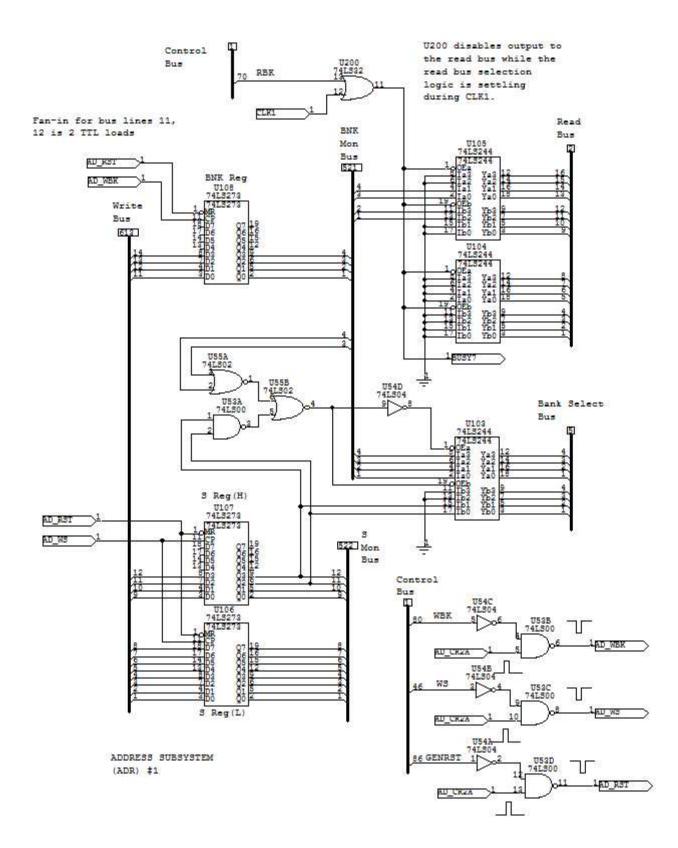
х	Х	Х	Х	1	0	0	0	1	0
0	0	0	0	1	1	0	0	1	1
0	0	0	1	1	1	0	0	1	1
0	0	1	0	1	1	0	0	1	1
0	0	1	1	1	1	0	0	1	1
0	1	0	0	1	1	0	1	0	0
0	1	0	1	1	1	0	1	0	1
0	1	1	0	1	1	0	1	1	0
0	1	1	1	1	1	0	1	1	1
1	0	0	0	1	1	1	0	0	0
1	0	0	1	1	1	1	0	0	1
1	0	1	0	1	1	1	0	1	0
1	0	1	1	1	1	1	0	1	1
1	1	0	0	1	1	1	1	0	0
1	1	0	1	1	1	1	1	0	1
1	1	1	0	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1

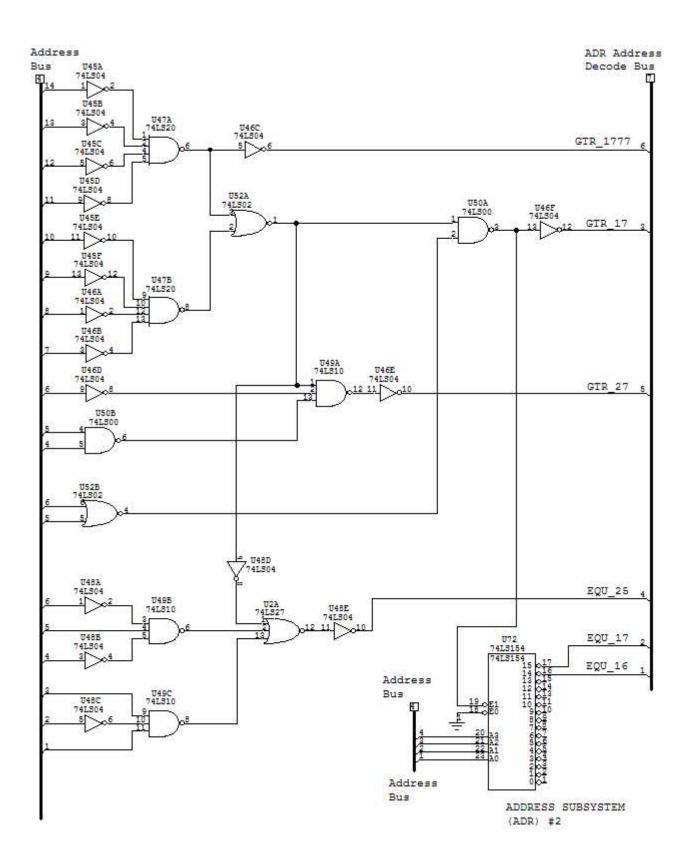

X=don't care

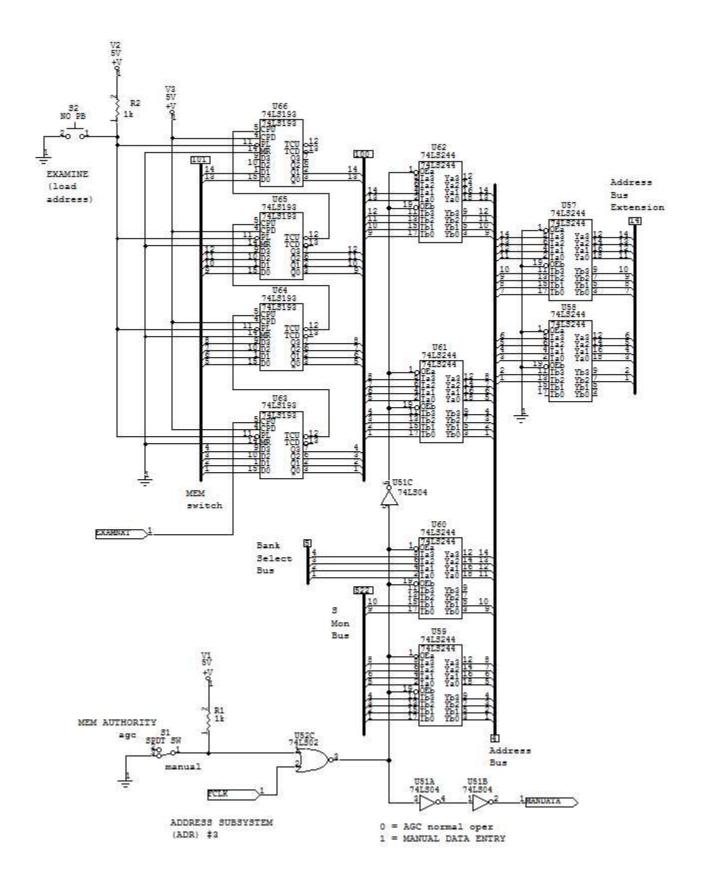

This is an early conceptual diagram of ADR architecture. The WRITE bus loads the BNK register or S register. Outputs from both registers feed into the bank decoder to generate the bank address.

The ADR generates some logic signals to test the address. These are internally used in MEM and also made available to the external modules. The GTR signals test whether the generated address is greater than 1777, 27, or 17 (all octal).

The EQU logic tests whether the generated address is equal to a specific value: 14, 16, 17, or 25.


The bank select logic chooses between the S register or a combination of the S register and the bank register to generate address bits 14-11. It uses S register bits 11 and 12 to make the decision. The selection signal enables tristate buffer A or B to produce the correct bank address.


ADR INPUTS:


<u>signal</u>	<u>full name</u>	state definition
CLK1 CLK2	CLOCK 1 CLOCK 2	1=read bus setup; inhibit read bus output data transfer occurs on falling edge
GENRST	GENERAL RESET	0=reset ADR registers
RBK WBK	READ BANK WRITE BANK	0=output BNK register to read bus 0=write into BNK register
write bus		ADR
WS	WRITE S	0=write into S register from write bus
5:		SORST A1077
WB_01	WRITE BUS 01	2675 A724
 WB_14	WRITE BUS 14	A6/2 A5/2 A470 A370 A379 15/082
	CLK1 CLK2 GENRST RBK WBK write bus WS WS	CLK1 CLOCK 1 CLK2 CLOCK 2 GENRST GENERAL RESET RBK READ BANK WBK WRITE BANK write bus WS WRITE S WB_01 WRITE BUS 01

ADR OUTPUTS:

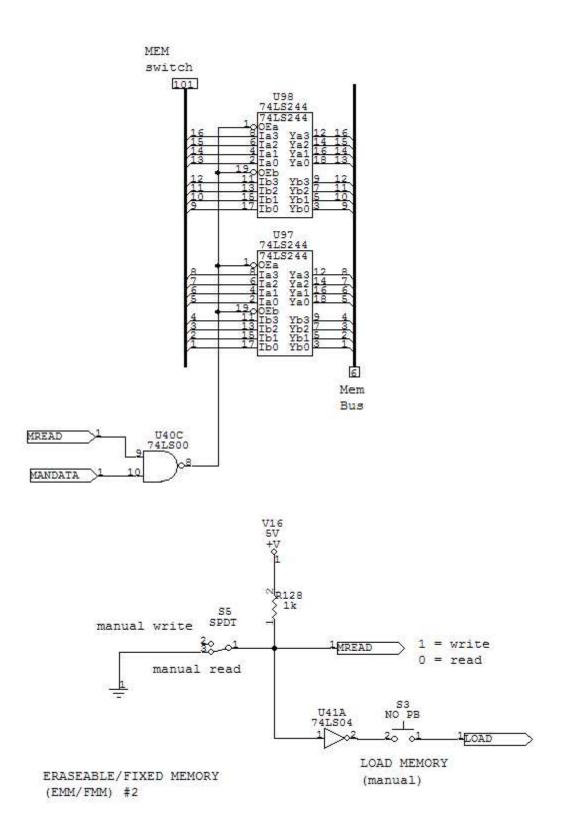
<u>I/F</u>	<u>signal</u>	<u>full name</u>	state definition	GR27051 GR1777051
MEM:	—	ADDRESS BUS 11	bank select bits	R1659 R1558 29W14 R1452
	 AD_14	ADDRESS BUS 14		W132 R132554 812554 W112 R110534 R110534 R110534 R110534 R110534 R110534 R110534 R110534 R11054 R132554 R1255554 R1255554 R1255554 R1255554 R1255554 R1255554 R1255554 R12555554 R12555555555555555555555555555555555555
	AD_1	ADDRESS BUS 1	low order address	33W7 R750 34W6 R649 35W5 R548 36W4 D447
	AD_10	ADDRESS BUS 10		37/W3 R346 38W2 R245 39W1 R144
variou	IS:			BSY7042
	EQU_16	ADDRESS = 016	O = CADR in reg $S = 016$	
		ADDRESS = 017	O = CADR in reg S = 017	
		ADDRESS > 017	0 = CADR in reg S > 017	
		ADDRESS = 025	O = CADR in reg $S = 025$	
		ADDRESS > 027	0 = CADR in reg S > 027	
	GTR_1777	ADDRESS > 01777	0=CADR in reg S > 01777	
RBUS				
	RB_01	READ BUS 01		
	RB_16	READ BUS 16		
	BUSY	READ BUS BUSY	0=output to read bus	

ł		MEM switch	
R145 1k 12	SEDT SW	101	V19 SV +V 1 NPURST 1
R144 1k 12	SPDT SW	15	EXAMINE NEXT (incr address)
R143 1k 1,002	SI9 SPDT SW	14	S22 1k UIA NO PB 44LS74
R142 1k 1,002	S18 SPDT SW	13	
Ri41 1k 1,002	S17 SPDT SW	12	M_SWCLK 1
R140 1k 1,000	SIC SEDT SW	11	EXAMINE NEXT SWITCH DEBOUNCE
R139 1k 1,0002	SIS SPDT SW	10	Switch DEBOONCE
R138 1k 1~~~2	S14 SEDT SW	9	
R137 1k 1 ~~~~2	S13 SPDT SW	B	
R136	SI2 SPDT SW	7	
R135 1k 1,2	SII SPDT SW	٩	SWITCH DEBOUNCE CLOCK
R134 1k 12	SIDT SW	5	
R133 1k 1,,2	SPDT SW	4	~ < ₽84
R132 1k 1/2	SEDT SW	3	U114 555 1 Grad B
R131 1k 1/2/2	SPDT SW	2	ARSS Ctl S S. 6k
R130 1k 1,2	36 SEDT SW	1	
	1	23	

ADDRESS SUBSYSTEM (ADR) #4

M_SWCLK

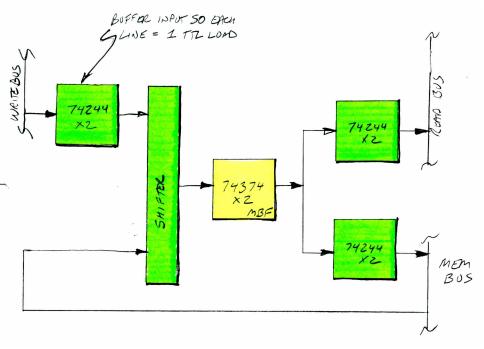

EMM/FMM (Eraseable/Fixed Memory)


MEM INPUTS:

<u>I/F</u> CLK:	<u>signal</u>	<u>full name</u>	state definition	
ULK.	CLK2	CLOCK 2	data transfer occurs on CLK	2
CPM:				
	WE	WRITE ERASEABLE	0=write memory bus to	·
erasea	able memory SBWG	WRITE G (MEM)	0=read eraseable or fixed memory onto memory bus	105BWG 20WE
			memory onto memory bus	40GR1777
ADR:	GTR_1777	ADDRESS > 01777	0=CADR in reg S > 01777	8 A14 M16 37 9 A13 M14 37 10 A13 M14 35
	AD_01	ADDRESS BUS 01		11 A11 M12 34
	 AD_10	ADDRESS BUS 10		14449 M93300 145449 M93300 145447 M8700 146446 M670
	AD_11	ADDRESS BUS 11	bank select portion of address bus	1845 1944 20143 20143 20142 20143 20142 20143 20142 20143 20142 20143 20142 20143 20142 2014 2014 2014 2014 2014 2014 201
	AD_14	ADDRESS BUS 14	bank select portion of address bus	

BIDIRECTIONAL (IN/OUT):

<u>I/F</u> EMM/F	<u>signal</u>	<u>full name</u>	state definition
	MEM 01	MEMORY BUS 01	Memory word formats:
		MEMORI_003 01	inst: 15-13:op code; 12-1:address
	MEM_15	MEMORY_BUS 15	data: 15:SG; 14-1 data
	MEM_16	MEMORY_BUS 16	parity (odd) bit for memory bus



MBF (Memory Buffer Register)

The AGC has a 16bit G register for transferring data to and from memory. WRITE bus data can be written directly into the G register, or can be bit-shifted before writing. Data from the G register can be copied to the READ bus, or to the . memory bus.

The following section shows how bits are shifted in bus-to-register-tomemory transfers. The row of 16 comma-separated entries represent bit locations at the

destination; the leftmost entry is the MSB, and the rightmost is the LSB. The designation in each location identifies source bit location. This will become clearer shortly.

In memory, the 16th bit is the odd parity bit, and the 15th bit is the sign. In the G register, the bits are flipped: the 16th bit is the sign, and the 15th bit is the parity. The WE pulse, which writes from the G register to memory, causes the sign bit (SG; bit 16 in G) to be written to bit 15 in memory. Parity is written to memory from the parity generator (PAR), not from the parity bit in G. (The G parity bit holds the parity read from memory.)

WE:

BX, SG, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1

Data is written from memory to G by the SBWG control pulse. The sign in memory (SG; bit 15) is written to bit 16 in G. The parity bit (bit 16 in memory) is written to bit 15 in G by the PAR subsystem.

SBWG:

SG, BX, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1

Data is written into G from the WRITE bus using WG (no shift), or one of the following control pulses that produce the following shifts:

W20:

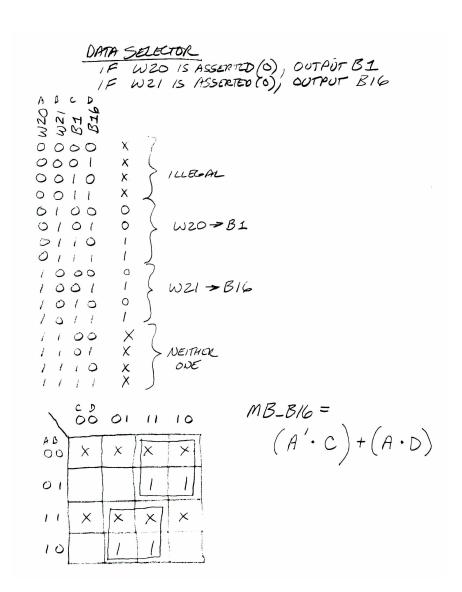
B1, BX, SG, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2

W21:

SG, BX, SG, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2

W22:

B14, BX, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, SG


W23:

SG, BX, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, SG

Data is read from G to the READ bus as follows. The parity bit (bit 15 in G) is not transferred to the read bus; instead, the sign bit is copied onto bits 15 and 16 of the READ bus.

RG:

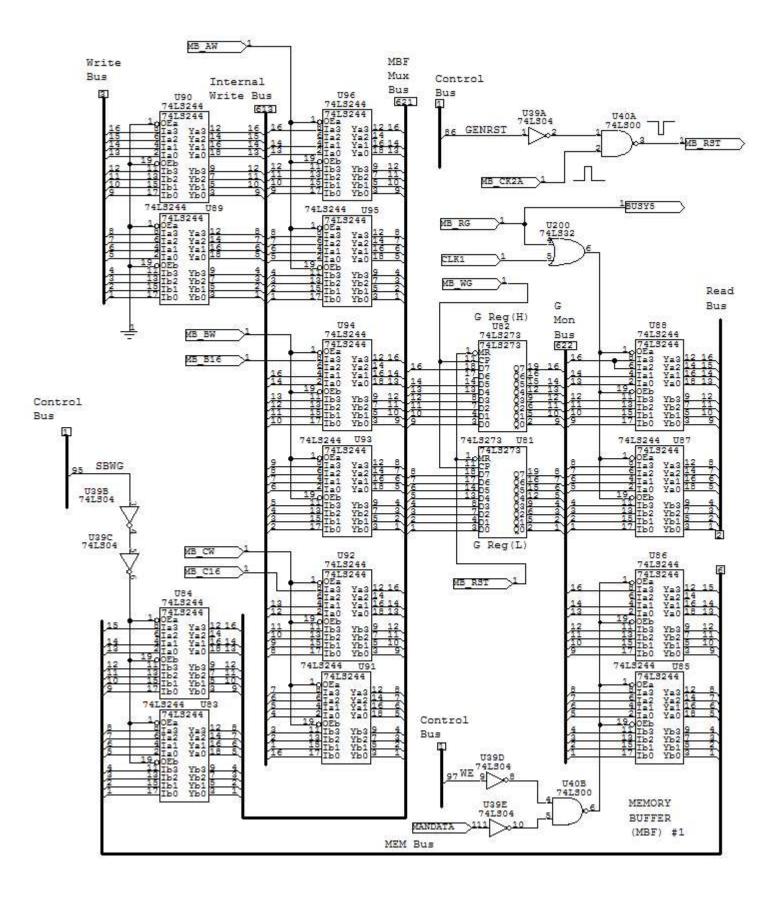
SG, SG, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2, B1

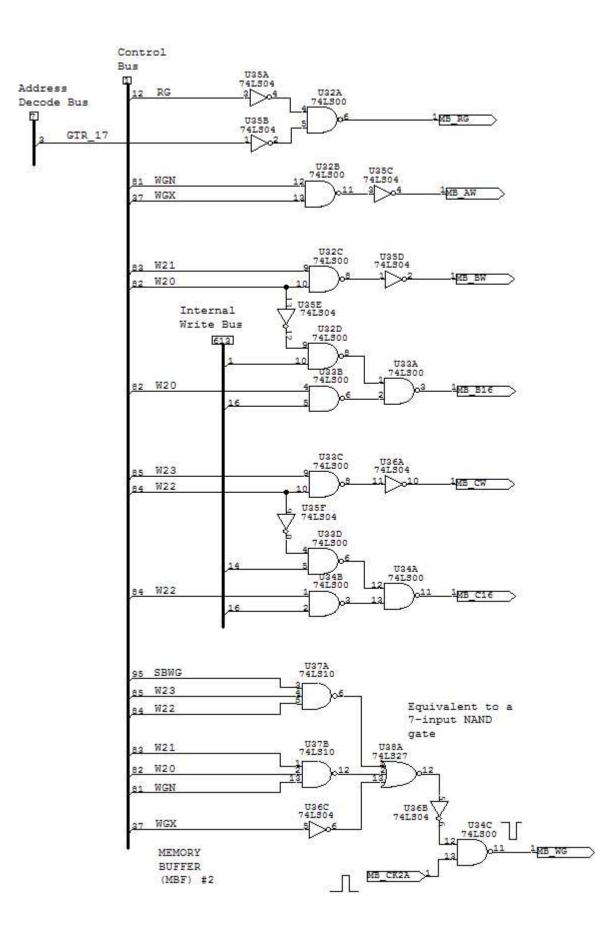
Some of the design that went into the combinational logic that sets bit 16 in the G register from the READ bus is shown here. The MB_B16 output controls the 16th bit for the W20 and W21 control pulses.

The MB_C16 output controls the 16th bit for the W22 and W23 control pulses.

MBF INPUTS:

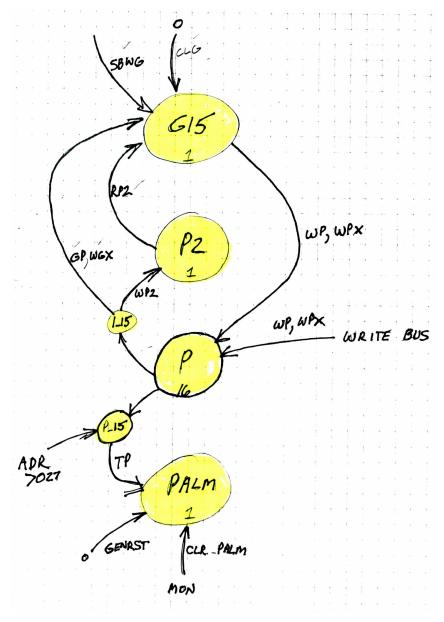
<u>1/F</u> CLK:	<u>signal</u>	<u>full name</u>	state definition	
CER.	CLK1 CLK2	CLOCK 1 CLOCK 2	1=read bus setup; inhibit data transfer occurs on fal	-
CPM:				
	RG	READ G	0=output G register to rea	
	WE	WRITE ERASEABLE	0=output G register to me	
	GTR_17	ADDRESS > 017	0=CADR in register $S > 01$	7
	SBWG	WRITE G (MEM)	0=write G from memory b	
	WGN	WRITE G	0=write G from read/write	
			bus (no shift)	MBF
	WGX	WRITE G	0=write G from read/write	LORG M15 20 SOWE M14 97
			bus (no shift)	30GR17 M13 66
	W20	WRITE G (SHIFT)	0=write G	50 SBWG MII 64
	W21	WRITE G (SHIFT)	0=write G	ZOWGX M962
	W22	WRITE G (SHIFT)	0=write G	20W20 M8 21 20W21 M7 60
	W23	WRITE G (SHIFT)	0=write G	100W22 M659 110W23 M557
	GENRST	GENERAL RESET	0=General Reset	LaoRST M355
				15 CK2 M1 54
WBUS	S:			17 W16 R16 52
	WB_01	WRITE BUS 01		19 W14 R15 50
				21W13 R1349 21W12 R1248
	WB_14	WRITE BUS 14		22 W11 R1147 23 W10 D1046
	WB_15	WRITE BUS 15	US (overflow) bit for write bus	24 W9 R945 25 W8 R844 26 W8 R843
	WB_16	WRITE BUS 16	SG (sign) bit for write bus	11000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 1100000 11000000

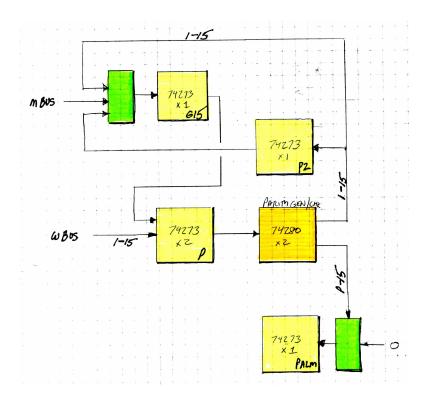

MBF OUTPUTS:


<u>I/F</u>			state definition	
RBUS:				
	RB_01	READ BUS 01		
	RB_14	READ BUS 14		
	RB_15	READ BUS 15	US (overflow) bit for read/write bus	
	RB_16	READ BUS 16	SG (sign) bit for read/write bus	
	BUSY READ BUS BUSY		0=output enabled to read bus	

BSYS5 035

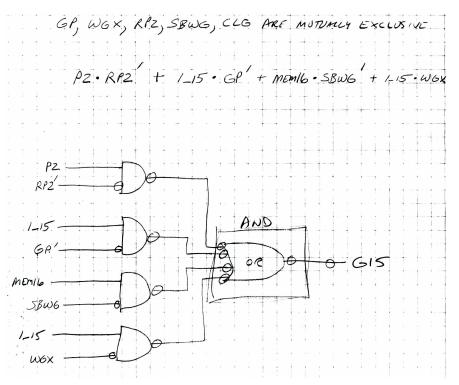
BIDIRECTIONAL (IN/OUT):


<u>I/F</u> EMM/	<u>signal</u>	<u>full name</u>	state definition
	MEM 01	MEMORY_BUS 01	Memory word formats:
			inst: 15-13:op code; 12-1:address
	MEM_15	MEMORY_BUS 15	data: 15:SG; 14-1 data
	MEM_16	MEMORY_BUS 16	parity (odd) bit for memory bus



PAR (Parity Generation and Test)

The PAR subsystem checks the memory parity bit during each memory cycle and generates an alarm if the parity bit in memory does not match the expected odd parity. The PAR subsystem also generates parity from the contents of G and writes this parity back to memory.



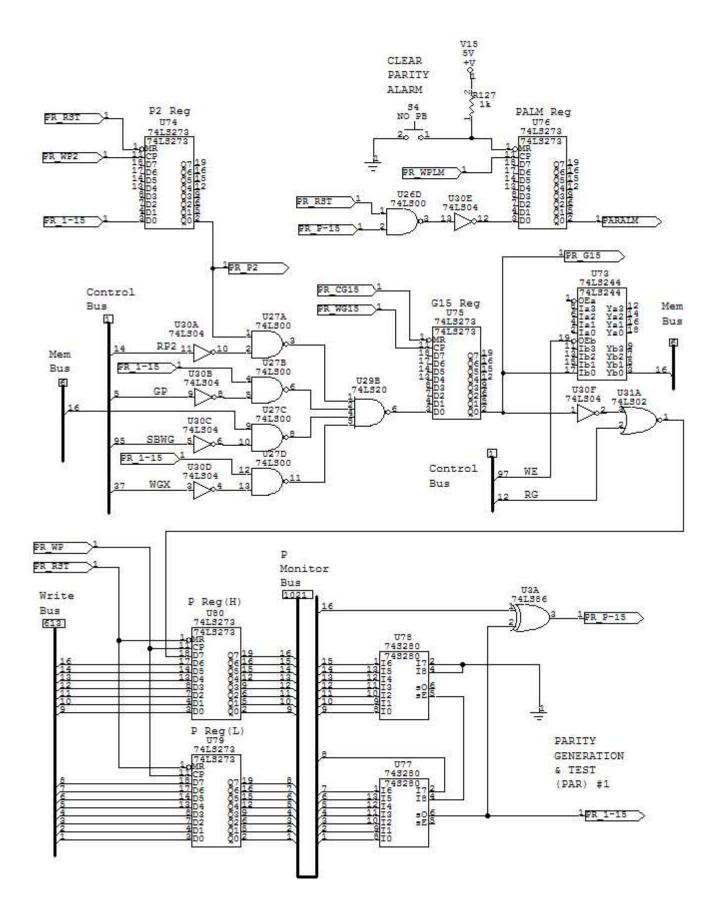
This block diagram of the PAR subsystem emerges from the previous diagram.

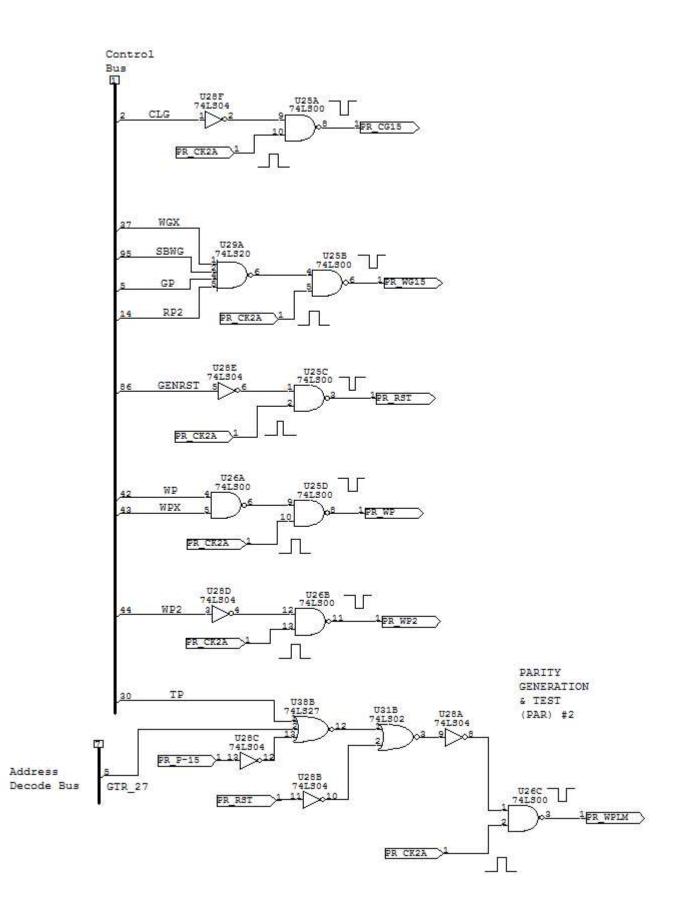
This is the combinational logic used to generate the input to the G15 register. This is the 1-bit register that holds bit 15 (the parity bit) for the G register. The remainder of the G register (bits 1-14 and bit 16) is in the MBF subsystem.

The minterms are written out on top. DeMorgan's Theorem and a little bubble-pushing changes the OR gate into a NAND.

PAR INPUTS:

<u>1/F</u> CLK:	<u>signal</u>	<u>full name</u>	state definition	
CLK.	CLK2	CLOCK 2	data transfer occurs on falling edge	
CPM:				
	RG	READ G15	0=write G15 into P	
	RP2	READ P2	0=write P2 into G15	
	WP	WRITE P	0=write P (same as WPX)	
	WPX	WRITE P	0=write P (same as WP)	
	WP2	WRITE P2	0=write P2 from 1-15 generator LSOGR27	
	SBWG	WRITE G15 (MEM)	0=write G15 from memory 12 CK2 parity bit 19 W16 M16 50	
	GP	WRITE G15	0=write G15 from 1-15	
	WGX	WRITE G15	0=write G15 from 1-15 26 9 generator (same as GP) 25 7	
	CLG	CLEAR G15	0=clear G15	
	ТР	TEST PARITY	0=test parity from P-15	
ADR:	GTR_27	ADDRESS > 027	0=CADR in Register S evaluates to > 027	
			5	
WBUS	: WB_01	WRITE BUS 01		
	WB_14	WRITE BUS 14		
	WB_15	WRITE BUS 15	US (overflow) bit for write bus	
	WB_16	WRITE BUS 16	SG (sign) bit for write bus	
MON:				
	CLRPLM	CLEAR PARITY ALM	0=clear parity alarm	
PAR OUTPUTS:				


<u>I/F</u>	<u>signal</u>	<u>full name</u>	state definition
MON			
	PARALM	PARITY ALARM	1=parity alarm

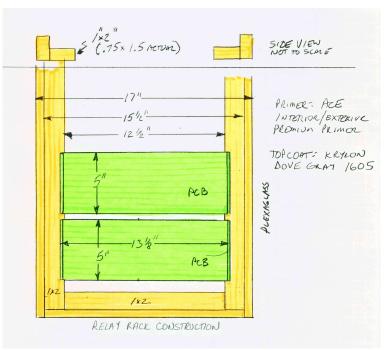

BIDIRECTIONAL (IN/OUT):

<u>I/F</u> <u>full name</u> <u>signal</u> EMM/FMM: MEM_16 MEMORY_BUS 16

state definition

parity (odd) bit for memory bus

Fabrication

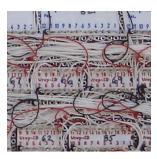

The MEM module is (3) 13"x5" circuit boards, and 1 control panel.

Module Rack

The module framework is designed to resemble a relay rack, but scaled to fit the circuit board dimensions. It is constructed out of 1"x2" pine and spray-painted semi-gloss gray.

Circuit boards are mounted to the rack by 2 phillips screws at either end. Nylon spacers (1/4") are used as standoffs to hold the board edges above the rack. The boards are mounted so the chips are in the back and the pins are wiring are visible from the front.

Power is distributed by 2 heavy aluminum bus bars mounted vertically, one per side, on the back of the module. Machine



screws are mounted through the bus bars at evenly-spaced intervals to provide connection points for the boards.

Solid copper wire (24 gauge) connects the boards to the bus bars. Ring terminals are used on the bus bar side of the connection. On the circuit board size, the wires are soldered directly to the supply rails.

Materials were purchased from Home Depot, ACE Hardware, and Radio Shack.

Circuit Boards

The circuit boards are 13"x5" general purpose prototyping boards, epoxy glass with double-side plated through pads on 0.1" centers (JAMECO 21477CL).

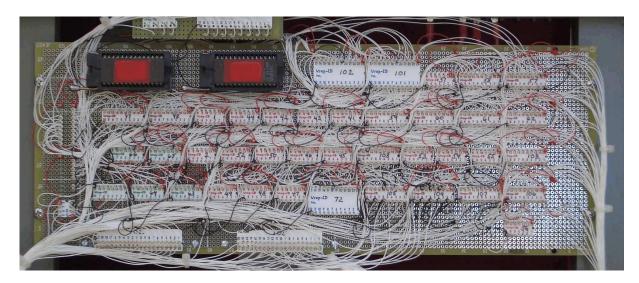
ICs are mounted in level 3 machine tooled wire-wrap sockets: 8, 14, 16, 20, 24, and 28 pin (JAMECO). Each socket has the pin-out labeled with a wire-wrap socket ID marker, which slips onto the socket before wrapping (JAMECO). The part number is written onto the ID marker.

Sockets are arranged in 4 horizontal rows on each board, with about 10 sockets per row.

Power is distributed on the back-side of each board by bare 24-gauge solid copper wire supply rails soldered at equal intervals to Klipwrap terminals: 3-prong terminals with a square tail for wire-wrapping (JAMECO 34163CL). A +5V rail runs above each row of sockets

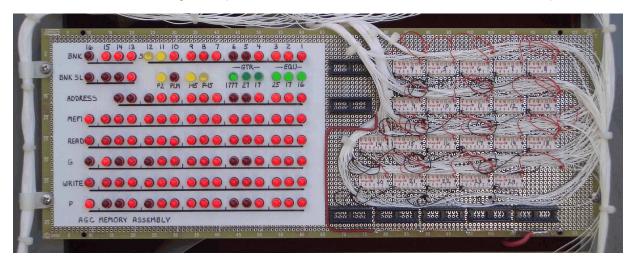
and a ground rail runs below. Each rail connects directly to the aluminum module power bus using a ring tail connector.

On the pin side of the board, all connections are made with 30 AWG Kynar wire-wrap wire (JAMECO). Red wire is used for direct connections to the +5V supply rail. Black wire is used for direct connections to ground. White wire is used for everything else.


Power connections from the supply rails to each ICs are double-wrapped. Bypassing capacitors (.1 uf disc) are soldered across the supply rails at the Klipwrap terminals; about 1 capacitor for every 2 IC packages.

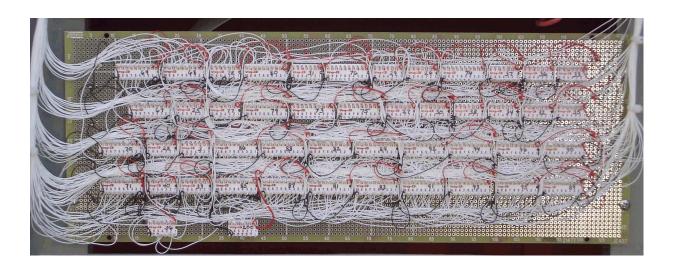
All connections were stripped and hand-wrapped using a Radio Shack hand-wrap tool. As each connection was made, the corresponding line on the schematic was marked with a colored highlighter.

DIP resistor networks (JAMECO) plugged into 20-pin wire-wrap sockets were used as current limiting resistors for the panel indicators.


MEM Printed Circuit Board (PCB) A

The A board contains the zero-insertion force (ZIF) sockets for the fixed memory EPROMs, and the 2 40-pin IDE connectors that interface to the other modules. The eraseable memories (U101, U102) are also clearly visible next to the EPROMs. The Memory Address (ADR) and Eraseable/Fixed Memory (EMM/FMM) subsystems are primarily located on this board.

MEM Printed Circuit Board (PCB) B


The B board contains the display indicators, their current-limiting resistor networks, and the open collector drivers. The display panel is a sheet of white styrene plastic. A push pin was used to make holes through the plastic and the LEDs were inserted in rows. The panel was

hand-lettered with an indelible marker.

MEM Printed Circuit Board (PCB) C

The C board primarily contains the Memory Buffer (MBF) and Parity Generation and Test (PAR) subsystems.

Parts (ICs)

74LS00 74LS02	(11) (3)	U50,U25,U26,U27,U40,U32,U33,U34,U43,U44,U53 U52,U31,U55
74LS04	(12)	U39, U28, U51, U56, U48, U46, U45, U41, U30, U35, U36, U54
74LS06	(21)	U20,U19,U18,U15,U16,U17,U14,U13,U12,U10,U11,U9,U6,U7,U8,U5,U
		4, U21, U22, U23, U24
74LS10	(3)	U49,U37,U42
74LS20	(2)	U47,U29
74LS27	(2)	U2,U38
74LS74	(1)	U1
74LS86	(1)	U3
74LS154	(1)	U72
74LS193	(4)	U63,U64,U65,U66
74LS244	(31)	U57,U58,U59,U60,U61,U62,U67,U68,U69,U70,U71,U73,U83,U84,U85,
		U86,U87,U88,U89,U90,U91,U92,U93,U94,U95,U96,U97,U98,U103,U10
		4,U105
74LS273	(10)	U74,U75,U76,U79,U80,U81,U82,U106,U107,U108
74S280	(2)	U77,U78
27C128	(2)	U99,U100
2016	(2)	U101,U102

Power Budget

	<u>qty</u>	<u>mA (ea)</u>	<u>mA (tot)</u>
74LS00	11	2.4	26.4
74LS02	3	2.4	7.2
74LS04	12	3.6	43.2
74LS06	21	3.6	75.6
74LS10	3	1.8	5.4
74LS20	2	1.2	2.4
74LS27	2	3.4	6.8
74LS74	1	4.0	4.0
74LS86	1	6.1	6.1
74LS154	1	6.2	6.2
74LS193	4	19.0	76.0
74LS244	31	32.0	992.0
74LS273	10	17.0	170.0
74LS280	2	16.0	32.0
27C128	2	25.0	50.0
2016	2	25.0	50.0
LED	124	20.0	2480.0
			4.0 Amps total

1.6 Amps (excluding LEDs)