Block I Apollo Guidance Computer (AGC)

How to build one in your basement

Part 3: Processing (PROC) Module

John Pultorak December, 2004

Abstract

This report describes my successful project to build a working reproduction of the 1964 prototype for the Block I Apollo Guidance Computer. The AGC is the flight computer for the Apollo moon landings, and is the world's first integrated circuit computer.

I built it in my basement. It took me 4 years.

If you like, you can build one too. It will take you less time, and yours will be better than mine.

I documented my project in 9 separate .pdf files:

Part 1	Overview:	Introduces	the pr	oject.
--------	-----------	------------	--------	--------

Part 2 CTL Module: Design and construction of the control module.

- Part 3 PROC Module: Design and construction of the processing (CPU) module.
- Part 4 MEM Module: Design and construction of the memory module.
- Part 5 IO Module: Design and construction of the display/keyboard (DSKY) module.
- Part 6 Assembler: A cross-assembler for AGC software development.
- Part 7 C++ Simulator: A low-level simulator that runs assembled AGC code.
- Part 8 Flight Software: My translation of portions of the COLOSSUS 249 flight software.
- Part 9 Test & Checkout: A suite of test programs in AGC assembly language.

Overview

The Processing Module (PROC) has 5 subsystems: PMI, ALU, CRG, INT, CTR

PMI (Processing Module external Interface) The PMI interfaces other processing module subsystems to external AGC modules. 40-pin IDE connectors interface to the other CTL, MEM, and IO modules. Inputs from those modules are buffered to 1 LSTTL load.

ALU (Arithmetic Logic Unit) The ALU contains the 16-bit ADDER to perform 1's complement arithmetic and increment the program counter (Z register). The ALU also contains the B and C registers, and logic to inclusive OR the contents of the them with the ADDER. The inclusive OR occurs when the control module (CTL) issues signals to READ the contents of both registers onto the READ bus simultaneously. The ALU transfers data from the READ bus to the WRITE bus for register-to-register transfers and can force the data lines of the WRITE bus to specific states to gate various constants into the AGC registers

CRG (Central Register) The AGC has four 16-bit "central registers" for general computational use. These are the accumulator (A) for general

computation; the program counter (Z) which contains the address of the next instruction; the Q register holding the remainder in the DV instruction, and the return address after TC instructions; and the LP register used to hold the lower product after MP instructions.

INT (Interrupt Priority)

The original AGC had five vectored interrupts. This recreation implements three of them: RUPT1, also called T3RUPT which is used as general-purpose timer by the AGC WAITLIST software; RUPT3, also called T4RUPT or DSRUPT, which is used to update the DSKY display at regular intervals; and RUPT4, also called KERUPT, which is triggered by a key press from the user's keyboard. The AGC responds to each interrupt by temporarily suspending the current program, executing a short interrupt service routine, and then resuming the

interrupted program.

CTR (Priority Counter)

Twenty memory locations in the original AGC functioned as up/down counters. The counters would increment (PINC) or decrement (MINC) in response to external inputs. Increment or decrement was handled by one 12-step subsequence of microinstructions inserted between any two regular instructions. This replica implements 5 of the counters: OVCTR, an overflow counter incremented or decremented by arithmetic overflow during certain instructions; TIME2 and TIME1, the AGC real-time clock; TIME3, a general purpose timer incremented by a 100Hz signal from the SCALER (SCL); and TIME4, a timer used to update the DSKY display.

The ALU has a 16-bit parallel adder. The addend and augend are supplied by the X and Y registers. The sum, called the U register although it is not really a register at all, is gated to the read bus through the RU (read U) control signal. The WX and WY control signals copy the contents of the write bus into the X and Y registers.

The B register is loaded from the write bus with the WB (write B) signal. The contents of B are output to the read bus with the RB (read B) signal. The inverted output of B can be gated to the read bus with the RC (read C) signal. NOTE: ALSO INCLUDES MANY CONTROL PULSES FOR SETTING SUBSETS OF BITS ON THE R/W BUS.

> MOST LEAD FULSES ARE INCLUSIVE OR ED ON TO THE BUS.

The AGC has four user-accessible central registers. The A register is the accumulator; Z is the program counter; Q stores the return address for jumps (TC instruction), and LP stores the lower product (MP instruction).

Central register contents can be output to the read bus by asserting the appropriate read control pulse (RA, RQ, RZ, or RLP). Each register is also mapped to a memory location, with register A mapped to address 0, Q to address 1, Z to 2, and LP to 3. The R0, R1, R2, and R3 control pulses output those registers to the read bus.

The write bus contents can be loaded into a central register with a write control pulse. WA and WALP load the A register; WQ, the Q register; WZ the Z register; and WLP and WALP the LP register. The W0, W1, W2, and W3 control pulses mapped to memory addresses 0,1,2, and 3 also load those registers.

The interrupt priority subsystem manages vectored interrupts. Five interrupts (0-4) are implemented. Each interrupt is latched by its own "RP cell" flip-flop. Signals from all RP cells feed into a priority encoder; a combinational logic array that outputs the code of the highest priority interrupt in the RP cells. When RPT is asserted, the priority code is latched into RPCELL. This is decoded into an address which is the interrupt vector; the address is written to the read bus when RRPA is asserted.

After the interrupt code has been loaded into RPCELL, asserting KRPT (knock-down RPT) causes the RP cell for that interrupt to be reset. This causes the next highest priority interrupt to be decoded by the priority encoder.

The INHINT and INHINT1 flip-flops inhibit interrupts.

The priority counter logic design is similar to the interrupt subsystem. Up (+) and down (-) count input signals feed into 20 PCELLs, one PCELL for each counter. The PCELLs feed into the priority encoder which outputs the code of the highest priority PCELL having a up or down input set. The PCELL code is written to the PCELL register when WPCTR is asserted.

The PCELL memory address, derived from PCELL, is written to read bus when RSCT is asserted. After the code is latched into the PCELL register, the corresponding PCELL is reset by asserting WOVR.

The up or down code

for the selected PCELL is written to PSEQ when WPCTR is asserted. This code feeds to the control logic on the CTL module which selects the PINC (increment) or MINC (decrement) instruction subsequence to bump the priority counter up or down.

The PINC and MINC subsequences are inserted between normal instruction subsequences. A SHINC subsequence implements a bit-shift which is used to load telemetry bits into the AGC and assemble them into words. SHINC is not implemented in this AGC replica.

PROC Internal Subsystem Interconnections

This diagram shows internal interconnections for the subsystems in the PROC module.

9/2/2003

PROC Module External Interfaces

The PROC module interfaces to the CTL, MEM, and IO modules through 40-pin IDE ribbon cables.

J100-PROC: PROC-to-CTL I/F J100 is a 40-pin IDE cable that connects the PROC module to the CTL module.

INPUTS (to PROC):

PIN	<u>signal</u>	<u>full name</u>	state definition
1	WA3	WRITE ADDR 3 (74)	0=Write reg at address 3 (LP)
2	WA2	WRITE ADDR 2 (73)	0=Write reg at address 2 (Z)
3	WA1	WRITE ADDR 1 (72)	0=Write reg at address 1 (Q)
4	WAO	WRITE ADDR 0 (71)	0=Write reg at address 0 (A)
5	RA3	READ ADDR 3 (60)	0=Read reg at address 3 (LP)
6	RA2	READ ADDR 2 (59)	0=Read reg at address 2 (Z)
7	RA1	READ ADDR 1 (58)	0=Read reg at address 1 (Q)
8	RA0	READ ADDR 0 (57)	0=Read reg at address 0 (A)
9	WZ	WRITE Z (50)	0=Write Z
10	WYx	WRITE Y NO RESET (49)	0=Write Y (do not reset)
11	WY	WRITE Y (48)	O=Write Y
12	WX	WRITE X (47)	0=Write X
13	WQ	WRITE Q (45)	0=Write Q
14	WOVR	WRITE OVF (41)	0=Write overflow
15	WOVI	WRITE OVF RUPT INH (40)	0=Write overflow RUPT inhibit
16	WOVC	WRITE OVF CNTR (39)	0=Write overflow counter
17	WLP	WRITE LP (38)	O=Write LP
18	WB	WRITE B (36)	O=Write B
19	WALP	WRITE A/LP (35)	O=Write A and LP
20	WA	WRITE A (34)	0=Write A
21	E10V	E10 SCALED ONESHOT	1 - timed out (100.0 Hz)
∠ I 22		PEAD 24 (25)	I = (IIIIed odd (100.0 IIZ))
23	R24 D00	PEAD 22 (23)	O = Read 22
24 25	R22	RLAD 22 (24)	0 = Read 2
20	RZ D1C	$ \begin{array}{c} RLAD \ Z \ (23) \\ DEAD \ 1 \ COMD \ (22) \\ \end{array} $	0-Read 2
20	D1	$ \begin{array}{c} READ \ I \ COMF \ (22) \\ DEAD \ I \ (21) \\ \end{array} $	O = Read 1
27	RT R7	$ \begin{array}{c} READ \ T \ (21) \\ READ \ T \ (20) \\ \end{array} $	0 - Read 7
20	RL	$ \begin{array}{c} READ \ Z \ (20) \\ READ \ H \ (19) \\ \end{array} $	$0 - \text{Read } \Sigma$
27	RSCT	$\begin{array}{c} READ \cup (17) \\ READ \cap NTR \ ADDR \ (18) \\ \end{array}$	0-Read selected counter address
30	RSB	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	0 - Read since bit
32	RRPA	$\begin{array}{c} READ \\ READ \\ RIPT \\ ADDR \\ (16) \end{array}$	0-Read BIIPT address
32	RO	$READ \cap (15)$	O = Read O
34	RIP	READ IP (13)	O - Read LP
35	RC	$READ \cap (11)$	O - Read C
36	RB14	$\begin{array}{c} READ \\ BIT \\ 14 \\ (10) \end{array}$	0 – Read bit 14
37	RB	READ B (9)	O - Read B
38	RA	$ \begin{array}{c} READ \ A \ (8) \end{array} $	O - Read A
39	KRPT	KNOCK DOWN RUPT (6)	0=Knock down Runt priority
40	CI	SET CARRY IN (1)	0 = Carry in
rυ	<u> </u>		

J101-PROC: PROC-to-CTL I/F J101 is a 40-pin IDE cable that connects the PROC module to the CTL module.

INPUTS (to PROC):

<u>PIN</u>	<u>signal</u>	<u>full name</u>	state definition
1	R2000	READ 2000 (101)	0=Read 2000
2	WPCTR	WRITE PCTR (98)	0=Write PCTR (latch priority counter seq)
3	RPT	READ RUPT (94)	0=Read RUPT opcode
4	INH	SET INHINT (93)	0=Set INHINT
5	CLRP	CLEAR RPCELL (92)	0=Clear RPCELL
6	CLINH1	CLEAR INHINT1 (88)	0=Clear INHINT1
7	CLINH	CLEAR INHINT (87)	0=Clear INHINT
8	GENRST	GENERAL RESET (86)	0=General Reset
19 20	CLK1 CLK2	CLOCK1 CLOCK2	1.024 MHz AGC clock 1 (normally low) 1.024 MHz AGC clock 2 (normally low)

OUTPUTS (from PROC):

<u>PIN</u> 21 22	<u>signal</u> SB_01 SB_02	<u>full name</u> SUB SEL 01 SUB SEL 02
23	IRQ	INT RQST
25	WB_01	WRITE BUS 01
26	WB_02	WRITE BUS 02
27	WB_03	WRITE BUS 03
28	WB_04	WRITE BUS 04
29	WB_05	WRITE BUS 05
30	WB_06	WRITE BUS 06
31	WB_07	WRITE BUS 07
32	WB_08	WRITE BUS 08
33	WB_09	WRITE BUS 09
34	WB_10	WRITE BUS 10
35	WB_11	WRITE BUS 11
36	WB_12	WRITE BUS 12
37	WB_13	WRITE BUS 13
38	WB_14	WRITE BUS 14
39	WB_15	WRITE BUS 15
40	WB 16	WRITE BUS 16

<u>state definition</u>
SB_01 is LSB; SB_02 is MSB
00 = no counter; 01 = PINC; 10 = MINC
0=interrupt requested.
(lsh)
(130)

US (overflow) bit SG (sign) bit

J104-PROC: PROC-to-IO I/F J104 is a 40-pin IDE cable that connects the PROC module to the IO module.

INPUTS (to PROC):

PIN	<u>signal</u>	<u>full name</u>
40	RB_01	READ BUS 01
39	RB_02	READ BUS 02
38	RB_03	READ BUS 03
37	RB_04	READ BUS 04
36	RB_05	READ BUS 05
35	RB_06	READ BUS 06
34	RB_07	READ BUS 07
33	RB_08	READ BUS 08
32	RB_09	READ BUS 09
31	RB_10	READ BUS 10
30	RB_11	READ BUS 11
29	RB_12	READ BUS 12
28	RB_13	READ BUS 13
27	RB_14	READ BUS 14
26	RB_15	READ BUS 15
25	RB_16	READ BUS 16
22	BUSY2	READ BUS BUSY
21	BUSY1	READ BUS BUSY
20	KB_STR	KEY STROBE

state definition (Isb)

US (overflow) bit SG (sign) bit

0=OUT register output to read bus 0=INP register output to read bus 1=key pressed strobe; to KEYRUPT. Key data is valid on the negative edge of KB_STR. Data is latched until the next keypress.

OUTPUTS (from PROC):

PIN	<u>signal</u>	<u>full name</u>
1	WB_01	WRITE BUS 01
2	WB_02	WRITE BUS 02
3	WB_03	WRITE BUS 03
4	WB_04	WRITE BUS 04
5	WB_05	WRITE BUS 05
6	WB_06	WRITE BUS 06
7	WB_07	WRITE BUS 07
8	WB_08	WRITE BUS 08
9	WB_09	WRITE BUS 09
10	WB_10	WRITE BUS 10
11	WB_11	WRITE BUS 11
12	WB_12	WRITE BUS 12
13	WB_13	WRITE BUS 13
14	WB_14	WRITE BUS 14
15	WB_15	WRITE BUS 15
16	WB_16	WRITE BUS 16

state definition (Isb)

US (overflow) bit SG (sign) bit J105-PROC: PROC-to-MEM I/F J105 is a 40-pin IDE cable that connects the PROC module to the MEM module.

INPUTS (to PROC):

PIN	<u>signal</u>	<u>full name</u>	state definition
40	RB_01	READ BUS 01	(Isb)
39	RB_02	READ BUS 02	
38	RB_03	READ BUS 03	
37	RB_04	READ BUS 04	
36	RB_05	READ BUS 05	
35	RB_06	READ BUS 06	
34	RB_07	READ BUS 07	
33	RB_08	READ BUS 08	
32	RB_09	READ BUS 09	
31	RB_10	READ BUS 10	
30	RB_11	READ BUS 11	
29	RB_12	READ BUS 12	
28	RB_13	READ BUS 13	
27	RB_14	READ BUS 14	
26	RB_15	READ BUS 15	US (overflow) bit
25	RB_16	READ BUS 16	SG (sign) bit
22 bus	BUSY7	READ BUS BUSY	O=BNK register output enabled to read
21	BUSY5	READ BUS BUSY	$0\!=\!G$ register output enabled to read bus

OUTPUTS (from PROC):

PIN	<u>signal</u>	<u>full name</u>
1	WB_01	WRITE BUS 01
2	WB_02	WRITE BUS 02
3	WB_03	WRITE BUS 03
4	WB_04	WRITE BUS 04
5	WB_05	WRITE BUS 05
6	WB_06	WRITE BUS 06
7	WB_07	WRITE BUS 07
8	WB_08	WRITE BUS 08
9	WB_09	WRITE BUS 09
10	WB_10	WRITE BUS 10
11	WB_11	WRITE BUS 11
12	WB_12	WRITE BUS 12
13	WB_13	WRITE BUS 13
14	WB_14	WRITE BUS 14
15	WB_15	WRITE BUS 15
16	WB_16	WRITE BUS 16

state definition (Isb)

US (overflow) bit SG (sign) bit

PROC CONTROL PANEL PUSHBUTTONS

RUPT1	Set the RUPT1 flip-flop (FF). Simulates a TIME3 overflow. Triggers a T3RUPT.
RUPT3	Set the RUPT3 flip-flop (FF). Simulates a TIME4 overflow. Triggers a T4RUPT (DSRUPT).
RUPT4	Set the RUPT4 flip-flop (FF). Simulates a DSKY keypress. Triggers a KEYRUPT.
TIME1	Set the TIME1 flip-flop (FF). Increments the low-order word of the AGC real-time clock.
TIME2	Set the TIME2 flip-flop (FF). Increments the high-order word of the AGC real-time-clock.
TIME3	Set the TIME3 flip-flop (FF). Increments the general purpose timer.
TIME4	Set the TIME4 flip-flop (FF). Increments the display update timer.

PROC CONTROL PANEL CONNECTIONS

PIN	<u>signal</u>	state definition
1	RUPT1	GND=set RUPT1 FF
2	RUPT3	GND=set RUPT3 FF
3	RUPT4	GND=set RUPT4 FF
4	TIME1	GND=set TIME1 FF
5	TIME2	GND=set TIME2 FF
6	TIME3	GND=set TIME3 FF
7	TIME4	GND=set TIME4 FF

8 GND

PROC INDICATORS

The PROC module has a panel of indicator lamps (LEDs) to show the state of PROC registers and critical logic signals.

These indicator lamps show the current state of all registers and some additional, important logic signals produced by the PROC module. AGC numbers are represented in octal, so all register lamps are in groups of three. At the time the photo was taken the AGC was running the COLOSSUS 249 flight software load, executing Verb 16, Noun 36: a monitor verb which displays the AGC real time clock.

PROC ASSEMBLY

INDICATORS #1

X Monitor	Va Y Nonitor	B V7 Sy Monitor	V6 Nonitor	VS
Bus	ty Bus	+V Bus	W Bus	+V
TALSOS DI28 RI			96 R56 74LS05 L	
U108 74LS05 LED1 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		V 11 R111 74L805 D 11 220 2 211 010 12	95 R95 74L905 L	75 R75 ED1 220
74LS05 D126 R1 74LS05 LED1 22 2 13 012 0	25 74LS05 D1 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	UISE 10 R109 01 220 01 220 01 105 741505 12 0 10 R109 741505 12 741505 12 741505 12 10 R109 10	194 R93 74LS05 L1 220 2 212 212 212	78 877 ED1 220 - 1002
ALSOS DI25 RI		09 R110 74L805 D 09 R110 74L805 D 01 220 4 00 00	193 R94 74LS05 L 101 220 4 11 010,	77 R78 ED1 220
UIOE 74LSO5 DI24 RI 74LSO5 LEDI 22	24 741905 D1 741905 LE 2 5 13 012,4	08 R108 74L805 LE	92 192 192 192 192 192 192 192 1	76 R76 ED1 220
U10F 74L905 D123 RL 12D1 222		07 R107 D1 220 - 1	91 R91 74L805 L	75 875 ED1 220
TALSOS DI22 RI		06 R105 74L805 LE 1 220 2 212 012	190 R89 74L905 L	74 873 ED1 220 - 1002
U11B 741905 D121 R1 741905 LED1 R1		V 05 R106 74L905 D 01 220 2 811 010	0 185 R50 74L505 L 1220 8 1 02-0	73 R74 ED1 220
UIIC 741805 DI20 R1 9 13 012,5 DI20 R1	20 U13F 741805 D1 ~2 2 3 04	04 B104 U16E D1 220 L 220 J S C	188 R88 741505 L 201 220 2 9 13 042,0	72 872 ED1 220 1 1 220
74LS05 D119 R1 74LS05 LED1 22 1011 010, 100		03 B103 74LS05 D D1 220 10 5 06 0	187 R87 741905 I 201 220 11 200 10	71 871 ED1 220
74LSOS DIS RI 74LSOS LEDI 22	UI3D 74L905 D1 74L905 LE	02 B101 74L305 LE D1 220 11 3 04 0	86 R85 741905 L1 201 2200 11 9 08 0	70 869 ED1 220
U11F 741805 1ED1 R1 12 5 05 0 100		01 R102 U178 D1 220 1 220 2 12 102	185 R86 741905 L 101 220 12 505 0	69 R70 ED1 220 220
UI2A 74LSOS DI16 R1 74LSOS LEDI 22		00 R100 741505 D 01 220 133 012,	184 R84 741505 1 101 220 1 13 04	68 R68 ED1 220 2
U128 741305 D115 R1 22 24 202 00 00 00			018C 141505 1 14102	67 ED1 220 2
U12C 74LSO5 D114 R1 1513 012 012	13 74LSOS DS 74LSOS DS 74LSOS DS	U17E 18 R97 74LS05 D 1220 25 08 0	182 R81 74LS05 L 101 220 1 1512 012,0	66 R65 ED1 220 - 1002
VI2D 741305 D113 R1 741305 LED1 R1 222		17 R98 741505 D 1220 2 25 06 0	× 181 R82 101 220 ↓ 101 220 ↓ 101 000	63 R66 ED1 220

PROC ASSEMBLY INDICATORS #2

A Monitor Bue	V4 LP SV Monitor S +V But	3 Q V Monitor 5V V Rue +V	Z Monitor 5
74L905 D64 R64 74L905 LED1 220	2 Dus 74LS05 LED1 220 1-3 012 1	1 126A 14LSO5 132 14LSO5 12D1 220 13 04 1 102	DUS 1725 U318 74L905 LED1 220 1 - 0 - 0 - 1
74L905 D63 R63 2-5 05 063 R63 2-5 05 06 00 000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	74LS05 D31 R31 2-1 02-1	U31A 74L905 LED1 R15 2 5 5 4 - 220
TALSOS LEDI 220	U25D 74LS05 LED1 220 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	741505 D30 R25 741505 LED1 220 213 012 1	74L905 D14 R13 74L905 LED1 220 2-2 04 1 - 1 - 220
U218 74LS05 LED1 220	2 4 4 5 1 5 1 220 2 4 5 1 5 1 220 4 5 1 5 1 220 4 5 1 5 1 220 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	141505 D25 741505 LED1 R30 411 010 to 120	141505 D13 R14
U21C D60 R60 741505 LED1 220 5 13 012,	U25B 74LS05 LED1 220 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1262 741905 D28 12D1 220 5 5 08 12D1 220	74L505 D12 R12 74L505 LED1 220 5-13 012, 4 - 1 - 220
141305 D59 741305 LED1 220 6-11 010 0	U25A 74LS05 LED1 220 2 6 1 22 1 220	1226F 74L505 LED1 220 5 5 05 5 1201 220	U30C 74LS05 LED1 R11 8 11 010 1 220
U21E 74L805 LED1 220 2-9 08 00	2 242 74LS05 D42 74LS05 LEDL 220 2.13	127A 741505 D26 7-3 220 7-3 220	74L905 LED1 220 74L905 LED1 220 7 9 08 4
U21F 74LB05 LED1 220 8 5 05 0 1000	2 8 11 010 1 10242 2 8 11 010 1 1020	U278 74LS05 LED1 220 8 20 22 20	U30A 74LS05 D9 R10 8 5 05 0 1220
U22A 74L905 LED1 220 3 3 04 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14LS05 D24 R24 74LS05 LED1 220 8-13 012 1	1299F 74L505 LED1 R8 2 2 24
U22B 74L905 D55 R55 10 1 220	U24C 74LS05 LED1 220 2 10 5 5 1 100 220	141.505 D23 R23 741.505 LED1 220 101 010 10 10	10 1 220 1 1 220
U22C 74LS05 D54 R53 1113 012 014 1220	2 11 2 12 2 11 2 12 2 13 8 13 7 12 20 1 12	U27E 74LS05 LED1 220 11 S 28 1 1 220	141505 D6 R5
74L305 D53 R54	2 121 121 121 121 121 121 121 1	U27F 74L905 D21 R22 12.5 12.5 12.0 2.0	UZ9C D5 R6 74L805 LED1 220 1211 010 1 - 1222
U22E 74LS05 LED1 220	U23F 74L905 D36 R36 LED1 220 2 1313 12 12 1 1220	1228A 74LS05 LED1 820 12.2 2 4 1 220	U298 74LS05 LED1 R4 13 8 08 08 1201 220
U22F 74L805 LED1 R51 14 5 05 101 220	2 141205 D35 R35 1412 010 1220 1411 010 11 1102	U288 74L805 D13 R19 141 220	U25A 74L505 D3 R3 14.5 05 LED1 220 14.5 05
123A 74L805 D50 R49 15 3 04 0	2 15 9 02 02 10 10 10 10 10 10 10 10 10 10 10 10 10	U28C D18 R17 74LS05 LED1 220 1512 012 1 1 1 220 2	UZ8F 74L805 LED1 220 15 3 04 4 - 1 - 220
U23B 74L905 LED1 220 16.1 02-0	2 123C D33 74LS05 LED1 220 2 16 5 6 1 1202	141505 D17 R18 141505 LED1 220	U28E 74L905 LED1 R2 151 220

INDICATORS #3

ALU (Arithmetic Logic Unit)

My earliest architectural representation of the ALU logic is shown below:

The ALU contains the 16-bit ADDER (colored orange in the diagram) which performs 1's complement arithmetic, and increments the program counter (Z register). Each orange box is a 4-bit parallel adder; collectively, they add 16 bits. The ADDER uses the X, Y, and U registers:

- X: the 16-bit extension register (2 8-bit registers in yellow) that holds one of two inputs to the ADDER.
- Y: the 16-bit extension register (also in yellow) that holds the other input to the ADDER.
- U: the ADDER output (the 1's complement sum of the contents of registers X and Y). Outputs to the bus labeled "B" on the diagram.

The ALU also contains the B and C registers:

- B: a general-purpose buffer register (shown as 2 8-bit registers in yellow), also used to pre-fetch the next instruction. At the start of the next instruction sequence, the upper bits of B (containing the next op code) are copied to the SQ register (in CTL), and the lower bits (the address) are copied to the S register in (MEM). Output to the bus labeled "A" on the diagram.
- C: not a separate register, but the 1's complement of B.

The ALU contains logic (using 74LS181 ALU chips, shown in green) to do any of the following: select the B register; select the complement of the B register (the "C" register); select the U register; select the C register OR'ed with U, or select logical zero. Those logic functions, needed for AGC operation, are shown in the upper right corner of the diagram. The outputs of the 74LS181 selector are gated through a buffer to the read bus.

The original AGC could inclusive OR the outputs of any combination of registers onto the bus, but the control module only used this feature for the B/C and U registers. One of the uses involved the MASK instruction, which is a logical AND: DeMorgan's theorem was used to implement the equivalent of a logical AND by inverting operands through the C register, performing a logical OR through the bus, and then inverting the result.

The 74LS181 logic functions are gated to the read bus through the

data selector logic, shown in the adjacent diagram.

The ALU also transfers data from the READ bus to the WRITE bus for register-to-register data moves: Data is output from the source register onto the READ bus, then transferred from the READ bus to the WRITE bus through the ALU, and finally loaded from the WRITE bus into the destination register.

The logic that translates the READ bus to the WRITE bus can also force the data lines of the WRITE bus to specific states to gate various arithmetic constants onto the bus. The accompanying diagram shows the the control signal on the left (RB14, R1, etc) and to the right is the bit pattern that's OR'ed onto the bus when the signal is asserted. The default state of the read bus is logical zero, so if no other read signal is asserted, the number that appears on the bus is the constant; otherwise, it's the constant inclusive OR'ed with the contents of the READ bus.

The ALU contains READ bus control logic. Registers in the MEM module, the central registers in the PROC module, and the ALU all interface to the READ bus through tri-state buffers. These buffers are normally in the high-impedance state, but the control module (CTL) issues READ control signals to output the contents of specific registers to the READ bus at certain times. Only one register should be gated onto the READ bus at any given time.

When no READ control signals are asserted, the ALU gates its output onto the READ bus by default. When the control module gates a register onto the READ bus, a BUSY signal is sent to the ALU module, which causes the ALU to inhibit its output. Because of propagation delays, the ALU might continue to output to the READ bus for a brief time while another register is also gated to the bus. To prevent this, all output to the read bus is inhibited during CLK1. This gives the control signals, which transition on the leading edge of CLK1, enough setup time to resolve the conflict.

ALU INPUTS:

<u>I/F</u>	<u>signal</u>	<u>full name</u>	state definition	
ULK.	CLK1 CLK2	CLOCK 1 CLOCK 2	1=read bus setup; inhibit read bu data transfer occurs on falling edg	is out ge
CPM:				
	RB RC RU	READ B READ C READ G	O=output B register to write bus O=output comp of reg B (C) to wr O=output U register to write bus	ite bus
	5.4			
	R1C R2 R22 R24 R2000 RB14	READ OCTAL 1 READ OCTAL -1 READ OCTAL 2 READ OCTAL 22 READ OCTAL 24 READ OCTAL 2000 READ BIT14	0 = incl OR 000001 w/write bus 0 = incl OR 177776 w/write bus 0 = incl OR 000002 w/write bus 0 = incl OR 000024 w/write bus 0 = incl OR 002000 w/write bus 0 = incl OR 020000 w/write bus	
	RSB	READ SIGN BIT	0=incl OR 100000 w/write bus	
	WB	WRITE B	0=write into B from write	ALU B R1665 C R1565 U R1464
	CI WY WX	WRITE CI WRITE Y WRITE X	0=set carry register to 1 0=write Y 0=write into X from write bus 0=write into X from write	R1302 R1201 1 R11059 2 R1059 2 R855 2 R855 2 R755
			bus L2 or	B14 R555 SB R454 R453
RBUS	:		Leow	B R151
	RB_01	READ BUS 01		Y W1649
	RB_14	READ BUS 14	5 🖸 🖓 🕅	YX W1447
	RB_15	READ BUS 15	US (overflow) bit for read bus ² 3 ₀ R.	W1345 W1245 ST W1144
	RB_16	READ BUS 16	SG (sign) bit for read bus 25	K2 W10 42 W9 42 W8 41
INP:	BUSY1	READ BUS BUSY	0=valid data from INP on	5Y1 W740 5Y2 W639 5Y3 W538
OUT:	BUSY2	READ BUS BUSY	0=valid data from OUT on	5Y4 W43 5Y5 W336 5Y6 W235
CTR:	BUSY3	READ BUS BUSY	0=valid data from CTR on read bus	
INT:	BUSY4	READ BUS BUSY	0=valid data from INT on read bu	IS
MBF:	BUSY5	READ BUS BUSY	0=valid data from MBF on read b	us
CRG:	BUSY6	READ BUS BUSY	0=valid data from CRG on read b	us
ADR:	BUSY7	READ BUS BUSY	0=valid data from ADR on read b	us

MBF OUTPUTS:

<u>I/F signal full name</u>

state definition

WBUS:

WB_01	WRITE BUS 01	
WB_14	WRITE BUS 14	
WB_15	WRITE BUS 15	US (overflow) bit for write bus
WB_16	WRITE BUS 16	SG (sign) bit for write bus
		-

CRG (Central Register)

The AGC has four 16-bit registers for general computational use. These are called the "central registers":

- A: the 16-bit accumulator, used for general computation.
- Z: the 16-bit program counter, which contains the address of the next instruction to be executed.
- Q: the 16-bit register used to hold the remainder in the DV instruction, and to hold the return address after TC instructions.
- LP: the 16-bit register used to hold the lower product after MP instructions.

Register A and LP shifters

In addition to "normal" control pulses that write each line of the write bus into the corresponding bit of the registers, the A and LP registers have special write control pulses that shift bits:

The WALP control pulse bit-shifts into the A and LP register. The table below shows how the shifter works. The row of 16 comma-separated entries represent bits in the register. The leftmost position is the register MSB, rightmost position is the LSB. The entry shows the bit of the WRITE bus that's mapped onto that register bit by the shifter.

For the WALP pulse, bit 1 of the WRITE bus (B1) is written into bit 14 of the LP register. "BX" means leave that bit of the register alone (don't change it).

The same WALP pulse causes bit 2 of the WRITE bus (B2) to be written into the lowest bit of the A register, bit 3 of the WRITE bus (B3) to be written into the next bit, and so forth. "US" (uncorrected sign) is the overflow bit (bit 15) of the WRITE bus. "SG" is the 1's complement sign (bit 16) from the WRITE bus.

 Similarly, the WLP control pulse bit-shifts the WRITE bus into the LP register as follows (D0 on bit 14 of the LP register means force the bit to zero):

WLP

B1, B1, D0, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2

The logic design for handling bit 14 of the LP register, which takes control inputs from WALP, WLP, and WA3 is shown here. WA3 is identical to WLP.

Depending upon the WALP, WLP, or WA3 inputs, bit 14 of LP will either be set to B1 of the WRITE bus, or forced to zero.

LOGIC DESIGN FOR BIT 14 INPUT TO LA REGISTER

CRG INPUTS:

<u>I/F</u> CLK ·	<u>signal</u>	<u>full name</u>	state definition	
OLK.	CLK1	CLOCK 1	1=read bus setup; inhibit i	read bus output
	CLK2	CLOCK 2	data transfer occurs on fall	ing edge
CPM:				CRG
	RA	READ A	0=output A to read bus	LORST
	RAO	READ A	0=output A to read bus	ZORA ZORAO
	RQ	READ Q	0=output Q to read bus	5oRA1
	RA1	READ Q	0=output Q to read bus	PORZ LORA2 BORLP
	RZ	READ Z	0=output Z to read bus	2 ORA3
	RA2	READ Z	0=output Zto read bus	LOWA0 LOWA0
	RLP	READ LP	0=output LPto read bus	2 OWZ
	RA3	READ LP	0=output LP to read bus	2-0WA2 2-0WALP 2-0WLP
	WA	WRITE A	0=load A from write bus	OWA3
	WAO	WRITE A	0=load A from write bus	20CK2 BSY6 055
			Quildend Q from write hus	23W16 R16 52
	VV Q		0 load Q from write bus	29 W14 R14 51
	VVAT	WRITE Q		26W12 R12 49 27W11 P11 48
	WZ	WRITE Z	0=load Z from write bus	28W10 R1047
	WA2	WRITE Z	0=load Z from write bus	30W8 R8445 31W7 R744
	WALP	WRITE A, LP	0=load A,LP from write	32W6 R643 33W5 R541
	WLP	WRITE LP	0=load LP from write bus	35W3 R340 36W2 R239 37W1 R138
	GENRST	GENERAL RESET	0=General Reset	4
WBUS	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			
	WB_01	WRITE BUS 01		

WB_14	WRITE BUS 14	
WB_15	WRITE BUS 15	US (overflow) bit for write bus
WB_16	WRITE BUS 16	SG (sign) bit for write bus

MBF OUTPUTS:

<u>I/F</u> RBUS:	<u>signal</u>	<u>full name</u>	state definition
	RB_01	READ BUS 01	
	RB_14	READ BUS 14	
	RB_15	READ BUS 15	US (overflow) bit for read/write bus
	RB_16	READ BUS 16	SG (sign) bit for read/write bus
	BUSY	READ BUS BUSY	0=output enabled to read bus

INT (Interrupt Priority)

The original AGC had five vectored interrupts. This recreation implements the following 3:

- RUPT1 Also called T3RUPT because it's triggered by overflow of the TIME3 priority counter.
- RUPT3 Also called T4RUPT because it's triggered by overflow of the TIME4 priority counter. Because the interrupt is used by software to update the DSKY display at regular intervals, it's sometimes called DSRUPT.
- RUPT4 Triggered by a key press from the user's keyboard. Also called KEYRUPT.

The AGC software responds to each interrupt by temporarily suspending the current program, executing a short interrupt service routine, and then resuming the interrupted program.

INT INPUTS:

<u>I/F</u> CLK:	<u>signal</u>	<u>full name</u>	state definition
0 EIK	CLK1 CLK2	CLOCK 1 CLOCK 2	1=read bus setup; inhibit read bus out data transfer occurs on falling edge
CPM:			
	GENRST	GENERAL RESET	0=reset INT registers
	RRPA	READ RUPT ADDRESS	0=output RPCELL address (2004,2010,2014,2020,2024) to read bus
	RPT KRPT	READ RUPT OPCODE KNOCK DOWN RUPT PRIO	0=load RUPT opcode into RPCELL register 0=reset RUPT latch currently selected by RPCELL register
	CLRP	CLEAR RPCELL	0=clear RPCELL register
	WOVI	WRITE OVF RUPT INH	0=test overflow; if overflow, inhibit interrupt (set INHINT1)
	CLINH1	CLEAR INHINT1	0=clear INHINT1 register
	INH CLINH	SET INHINT CLEAR INHINT	0=set INHINT register 11 CK2 R8 30 0=clear INHINT register -3 cRPT1 R6 28
WBUS	: WB_15	WRITE BUS 15	US (overflow) bit for write
	WB_16	WRITE BUS 16	SG (sign) bit for write bus
CTR/K	BD:		
	RUPT1	INTERRUPT 1	0=trigger interrupt 1 (2004 octal; TIME3 overflow)
	RUPT3	INTERRUPT 3	0=trigger interrupt 3 (2014 octal; TIME4 overflow)
	RUPT4	INTERRUPT 4	0=trigger interrupt 4 (negative edge) (2020 octal; keyboard activity)

Note: interrupt cells above RUPT4 not implemented.

INT OUTPUTS:

<u>I/F</u> SEQ:	<u>signal</u>	<u>full name</u>	state definition
	IRQ	INT RQST	0=interrupt requested. Active if allof the following are true:a) one or more RUPT FF's are setb) interrupt is not currently being serviced

c) interrupts are not inhibited

-	-		-	
D	ы	11	9	•
11	D	U	\mathbf{J}	

RB_01	READ BUS 01	
 RB_14	READ BUS 14	
RB_15 RB_16	READ BUS 15 READ BUS 16	US (overflow) bit for read/write bus SG (sign) bit for read/write bus
BUSY	READ BUS BUSY	0=output enabled to read bus

reset RUPT

CTR (Priority Counter)

The Block I AGC had 20 memory locations dedicated as up/down counters (involuntary counters). The counters would increment or decrement in response to external plus or minus logic signals. Increment (PINC) or decrement (MINC) was handled by one subsequence of microinstructions inserted between any two regular instruction subsequences when counter inputs occurred.

This replica implements 5 counters used by the AGC operating system and user interface:

<u>Counter</u>	<u>Addr</u>	Description					
OVCTR	34	An overflow overflow cond	An overflow counter incremented (PINC) or decremented (MINC) when overflow conditions occur during certain instructions.				
TIME2	35	The high-ord of TIME1.	The high-order bits of the AGC clock; incremented (PINC) by overflow of TIME1.				
TIME1	36	The low-orde signal from t	The low-order bits of the AGC clock; incremented (PINC) by a 100Hz signal from the SCALER (SCL) in the control module (CTL).				
TIME3	37	A general purpose timer incremented by a 100Hz signal from the SCALER (SCL) in the control module (CTL).					
TIME4	40	A special purpose timer used for software update of the DSKY display. Incremented by a 100Hz signal from the SCALER (SCL) in the control module (CTL).					
INT/CTR interface		ace	CONNER ADA 34 OVCTR				
This chart shows how counter overflows are handled. F10 (from the scaler) increments TIME1, TIME3, and TIME4.		v counter d. F10 (from ts TIME1,	35 TIMEL V + FIO (100 HZ) AGO CLOCK 36 TIMEZ + OVORFLOW OF TIME 1 AGO CLOCK 37 TIMES I+ FIO (100 HZ) (Gen PURP TIMER WATTUST 40 TIMEY V + FIO (100 HZ) (TIMER FOR DISPLAY)				
A positive overflow of TIME1 causes an increment of TIME2.		f TIME1 of TIME2.	41 UPLINK				
Positive overflow of TIME3 triggers a T3RUPT interrupt.		TIME3 terrupt.					

Positive overflow of TIME4 triggers a DSRUPT (T4RUPT) interrupt.

The addresses of TIME1 and TIME2 are reversed for Block II. This chart shows the Block I order, but my replica used the Block II order for compatibility with the COLOSSUS flight software.

CTR Design Problem

During unit testing, I uncovered a bug in my implementation of CTR: The plus inputs set the P-cell which eventually triggers a PINC subsequence and increments the counter. Minus inputs set the M-cell, which triggers a MINC subsequence and decrements the counter. Near-simultaneous plus and minus inputs should cancel out, producing no change in count.

As a consequence, the counter logic was designed so that, if the P- and M-cells are both set, no counter sequence (PINC or MINC) is selected. The problem is, the P- and M-cells are reset by WOVR, which only occurs in PINC or MINC. So, if both cells are set--and therefore, no subsequence is selected--WOVR is never issued, the cells never reset, and all counting activity is disabled for that counter.

Here are the options I developed fixing the design:

a) Create a new subsequence similar to PINC or MINC that issues WOVR, but does not change the counter. Select this new subsequence when the P- and M-cells are simultaneously set.

b) Allow the P- and M-cells to trigger PINC and MINC sequences, resulting in a net change of zero to the counter.

c) Leave the design as-is, because the M-cell is only used for OVCTR in my implementation, and therefore, the problem can never occur.

I choose option C to avoid redesign and re-unit-testing of CTR.

CTR INPUTS:

<u>1/F</u>	<u>signal</u>	<u>full name</u>	state definition	
ULK.	CLK1 CLK2	CLOCK 1 CLOCK 2	1=read bus setup; inhibit data transfer occurs on fa	read bus out Iling edge
CPM:	GENRST	GENERAL RESET	0=reset CTR registers	CTR 10WPCT CP8 064 20RSCT CP7 09
	WPCTR	WRITE PSEQ	0=write sequence into PSEO	40WOVC 50WOVR CN8 060 CN7 055
	RSCT	READ PCELL ADDRESS	0=output PCELL address (034-043) to read bus	Zorst CN605 CP505 CP405
	WOVC	WRITE OVRFLOW CNTR	0=test overflow and inc/dec OVCTR	¹² CK2 SB2 53 SB1 52
	WOVR	WRITE OVERFLOW	O=clear selected PCELL and handle	50P3P R1650 60P4P R1549 70P5P R1548 11447
WBUS			counter overflow (if any)	20W16 R1144 21W15 R10443
	WB_15	WRITE BUS 15	US (overflow) bit for write bus	40P6P R741 50P7P R640
	WB_16	WRITE BUS 16	SG (sign) bit for write bus	80P6M R336 80P6M R336 900P7M R236 900P8M R135
EXTER	RNAL:			BSY3 033
	РЗР	P3 CELL + COUNT	0=count up P3 counter (036 octal; TIME1)	·
	P4P	P4 CELL + COUNT	0=count up P4 counter (037 octal; TIME3)	
	P5P	P5 CELL + COUNT	0=count up P5 counter (040 octal, TIME4)	
			Note: priority cells 6-20 n	ot implemented.

CTR OUTPUTS:

I/F	<u>signal</u>	<u>full name</u>	state definition
COL	JNTER OVERFL	OW:	
	CPO_04	P4 + OVERFLOW	0=P4 cell pos ovf (during WOVR) note: TIME3 + overflow; connect to INT subsystem to trigger T3RUPT interrupt.
	CPO_05	P5 + OVERFLOW	0=P5 cell pos ovf (during WOVR)

note: TIME4 + overflow; connect to INT subsystem to trigger T4RUPT (DSRUPT) interrupt.

SEQ:

10130
C; 10 = MINC
nd/write bus
rite bus
ad bus

Fabrication

The PROC module is (4) 13"x5" circuit boards, and 1 control panel.

Module Rack

The module framework is designed to resemble a relay rack, but scaled to fit the circuit board dimensions. It is constructed out of 1"x2" pine and spray-painted semi-gloss gray.

Circuit boards are mounted to the rack by 2 phillips screws at either end. Nylon spacers (1/4") are used as standoffs to hold the board edges above the rack. The boards are mounted so the chips are in the back and the pins are wiring are visible from the front.

Power is distributed by 2 heavy aluminum bus bars mounted vertically, one per side, on the back of the module. Machine screws are mounted through the bus bars at evenly-spaced intervals to provide connection points for the boards.

Solid copper wire (24 gauge) connects the boards to the bus bars. Ring terminals are used on the bus bar side of the connection. On the circuit board size, the wires are soldered directly to the supply rails.

Materials were purchased from Home Depot, ACE Hardware, and Radio Shack.

Circuit Boards

The circuit boards are 13"x5" general purpose prototyping boards, epoxy glass with doubleside plated through pads on 0.1" centers (JAMECO 21477CL).

ICs are mounted in level 3 machine tooled wire-wrap sockets: 8, 14, 16, 20, 24, and 28 pin (JAMECO). Each socket has the pin-out labeled with a wire-wrap socket ID marker, which slips onto the socket before wrapping (JAMECO). The part number is written onto the ID marker.

Sockets are arranged in 4 horizontal rows on each board, with about 10 sockets per row.

Power is distributed on the back-side of each board by bare 24-gauge solid copper wire supply rails soldered at equal intervals to Klipwrap terminals: 3-prong terminals with a square tail for wire-wrapping (JAMECO 34163CL). A +5V rail runs above each row of sockets and a ground rail runs below. Each rail connects directly to the aluminum module power bus using a ring tail connector.

On the pin side of the board, all connections are made with 30 AWG Kynar wire-wrap wire (JAMECO). Red wire is used for direct connections to the +5V supply rail. Black wire is used for direct connections to ground. White wire is used for everything else.

Power connections from the supply rails to each ICs are double-wrapped. Bypassing capacitors (.1 uf disc) are soldered across the supply rails at the Klipwrap terminals; about 1 capacitor for every 2 IC packages.

All connections were stripped and hand-wrapped using a Radio Shack hand-wrap tool. As each connection was made, the corresponding line on the schematic was marked with a colored highlighter.

DIP resistor networks (JAMECO) plugged into 20-pin wire-wrap sockets were used as current limiting resistors for the panel indicators.

PROC Printed Circuit Board (PCB) A

The A board contains display drivers for the B board (left side), buffers for the interfaces to external modules (bottom right), and priority counter logic (upper right). Sockets for 3 IDE interface cables to external modules are visible at the bottom.

PROC Printed Circuit Board (PCB) B

The B board contains the display indicators, their current limiting resistor networks, and the open collector drivers. The display panel is a sheet of white styrene plastic. A push pin was used to make holes through the plastic and the LEDs were inserted in rows. The panel was hand-lettered with an indelible marker.

PROC Printed Circuit Board (PCB) C

The C board contains the the logic for the interrupt (INT) subsystem (upper half of the board), and the central registers (CRG; lower half of the board).

PROC Printed Circuit Board (PCB) D

The D board contains the ALU logic. The large 74181 ALU chips are at the bottom right. The four chips that form the ADDER are in the bottom half of the board, slightly to the right of the middle.

19104 131 -ID 132 133)))))))))

Parts (ICs)

IC's, sockets, PCB's, resistors, capacitors, wire-wrap wire were purchased from JAMECO. IDE wire-wrap sockets were from DigiKey. Wire ties, wire-wrap tools, and copper wire were from Radio Shack. IDE ribbon cables were purchased from an online computer supplier.

74LS00	(9)	U60, U66, U57, U53, U51, U44, U46, U47, U42
74LS02	(4)	U70,U6,U49,U2
74LS04	(11)	U54,U45,U37,U68,U7,U36,U69,U71,U59,U48,U72
74LS06	(26)	U28,U29,U30,U31,U27,U26,U23,U24,U25,U22,U21,U20,U18,U19,U17,U
		16, U15, U12, U13, U14, U11, U10, U35, U34, U33, U32
74LS08	(4)	U63,U61,U56,U52
74LS10	(2)	U50,U43
74LS20	(2)	U67,U73
74LS21	(1)	U1
74LS27	(1)	U9
74LS32	(5)	U4,U41,U40,U39,U38
74LS83	(4)	U134,U135,U136,U137
74LS86	(1)	U5
74LS112	(7)	U65,U64,U62,U58,U55,U8,U3
74LS138	(4)	U84, U85, U86, U94
74LS148	(2)	U93,U97
74LS151	(2)	U87,U88
74LS181	(4)	U130,U131,U132,U133
74LS244	(33)	U74,U75,U76,U77,U78,U79,U80,U81,U82,U83,U89,U90,U95,U96,U101,
		U102,U104,U105,U108,U111,U112,U115,U116,U117,U118,U119,U120,
		U121,U122,U124,U125,U128,U129
74LS273	(19)	U91,U92,U98,U99,U100,U103,U106,U107,U109,U110,U113,U114,U123
		,U126,U127,U138,U139,U140,U141

Power Budget

	<u>qty</u>	<u>mA (ea)</u>	<u>mA (tot)</u>
74LS00	9	2.4	21.6
74LS02	4	2.4	9.6
74LS04	11	3.6	39.6
74LS06	26	3.6	93.6
74LS08	4	4.4	17.6
74LS10	2	1.8	3.6
74LS20	2	1.2	2.4
74LS21	1	2.2	2.2
74LS27	1	3.4	3.4
74LS32	5	4.9	24.5
74LS83	4	22.0	88.0
74LS86	1	6.1	6.1
74LS112	7	4.0	28.0
74LS138	4	6.3	25.2
74LS148	2	12.0	24.0
74LS151	2	6.0	12.0
74LS181	4	21.0	84.0
74LS244	33	32.0	1056.0

323.0
3060.0
4.9 Amps total
1.9 Amps (excluding LEDs)