
Block I
Apollo Guidance Computer (AGC)

How to build one in your basement

Part 3: Processing (PROC) Module

John Pultorak

December, 2004

Abstract

This report describes my successful project to build a working reproduction of the 1964

prototype for the Block I Apollo Guidance Computer. The AGC is the flight computer for the

Apollo moon landings, and is the world’s first integrated circuit computer.

I built it in my basement. It took me 4 years.

If you like, you can build one too. It will take you less time, and yours will be better than

mine.

I documented my project in 9 separate .pdf files:

Part 1 Overview: Introduces the project.

Part 2 CTL Module: Design and construction of the control module.

Part 3 PROC Module: Design and construction of the processing (CPU) module.

Part 4 MEM Module: Design and construction of the memory module.

Part 5 IO Module: Design and construction of the display/keyboard (DSKY) module.

Part 6 Assembler: A cross-assembler for AGC software development.

Part 7 C++ Simulator: A low-level simulator that runs assembled AGC code.

Part 8 Flight Software: My translation of portions of the COLOSSUS 249 flight

software.

Part 9 Test & Checkout: A suite of test programs in AGC assembly language.

Overview

The Processing Module (PROC) has 5 subsystems: PMI, ALU, CRG, INT, CTR

PMI (Processing Module

external Interface)

The PMI interfaces other

processing module subsystems

to external AGC modules.

40-pin IDE connectors interface

to the other CTL, MEM, and IO

modules. Inputs from those

modules are buffered to 1

LSTTL load.

ALU (Arithmetic Logic Unit)

The ALU contains the 16-bit

ADDER to perform 1's

complement arithmetic and

increment the program counter

(Z register). The ALU also

contains the B and C registers,

and logic to inclusive OR the

contents of the them with the

ADDER. The inclusive OR occurs

when the control module (CTL)

issues signals to READ the

contents of both registers onto

the READ bus simultaneously.

The ALU transfers data from the

READ bus to the WRITE bus for

register-to-register transfers

and can force the data lines of

the WRITE bus to specific states

to gate various constants into

the AGC registers

CRG (Central Register)

The AGC has four 16-bit

“central registers” for general

computational use. These are

the accumulator (A) for general

computation; the program counter (Z) which contains the address of the next instruction;

the Q register holding the remainder in the DV instruction, and the return address after TC

instructions; and the LP register used to hold the lower product after MP instructions.

INT (Interrupt Priority)

The original AGC had five vectored interrupts. This recreation implements three of them:

RUPT1, also called T3RUPT which is used as general-purpose timer by the AGC WAITLIST

software; RUPT3, also called T4RUPT or DSRUPT, which is used to update the DSKY display

at regular intervals; and RUPT4, also called KERUPT, which is triggered by a key press from

the user's keyboard. The AGC responds to each interrupt by temporarily suspending the

current program, executing a short interrupt service routine, and then resuming the

interrupted program.

CTR (Priority Counter)

Twenty memory locations in the original AGC functioned as up/down counters. The counters

would increment (PINC) or decrement (MINC) in response to external inputs. Increment or

decrement was handled by one 12-step subsequence of microinstructions inserted between

any two regular instructions. This replica implements 5 of the counters: OVCTR, an overflow

counter incremented or decremented by arithmetic overflow during certain instructions;

TIME2 and TIME1, the AGC real-time clock; TIME3, a general purpose timer incremented by

a 100Hz signal from the SCALER (SCL); and TIME4, a timer used to update the DSKY

display.

The ALU has a 16-bit

parallel adder. The

addend and augend

are supplied by the

X and Y registers.

The sum, called the

U register although

it is not really a

register at all, is

gated to the read

bus through the RU

(read U) control

signal. The WX and

WY control signals

copy the contents of

the write bus into

the X and Y

registers.

The B register is

loaded from the

write bus with the

WB (write B) signal.

The contents of B

are output to the

read bus with the RB

(read B) signal. The

inverted output of B

can be gated to the

read bus with the RC

(read C) signal.

The AGC has four user-accessible central registers. The A register is the accumulator; Z is

the program counter; Q stores the return address for jumps (TC instruction), and LP stores

the lower product (MP

instruction).

Central register contents

can be output to the read

bus by asserting the

appropriate read control

pulse (RA, RQ, RZ, or

RLP). Each register is

also mapped to a

memory location, with

register A mapped to

address 0, Q to address

1, Z to 2, and LP to 3.

The R0, R1, R2, and R3

control pulses output

those registers to the

read bus.

The write bus contents

can be loaded into a

central register with a

write control pulse. WA

and WALP load the A

register; WQ, the Q

register; WZ the Z

register; and WLP and

WALP the LP register.

The W0, W1, W2, and

W3 control pulses

mapped to memory

addresses 0,1,2, and 3

also load those registers.

The interrupt priority

subsystem manages

vectored interrupts. Five

interrupts (0-4) are

implemented. Each

interrupt is latched by its

own “RP cell” flip-flop.

Signals from all RP cells

feed into a priority

encoder; a combinational

logic array that outputs

the code of the highest

priority interrupt in the

RP cells. When RPT is

asserted, the priority

code is latched into

RPCELL. This is decoded

into an address which is

the interrupt vector; the

address is written to the

read bus when RRPA is

asserted.

After the interrupt code

has been loaded into

RPCELL, asserting KRPT

(knock-down RPT) causes

the RP cell for that

interrupt to be reset. This

causes the next highest

priority interrupt to be

decoded by the priority

encoder.

The INHINT and INHINT1

flip-flops inhibit

interrupts.

The priority counter

logic design is similar

to the interrupt

subsystem. Up (+)

and down (-) count

input signals feed into

20 PCELLs, one PCELL

for each counter. The

PCELLs feed into the

priority encoder which

outputs the code of

the highest priority

PCELL having a up or

down input set. The

PCELL code is written

to the PCELL register

when WPCTR is

asserted.

The PCELL memory

address, derived from

PCELL, is written to

read bus when RSCT

is asserted. After the

code is latched into

the PCELL register,

the corresponding

PCELL is reset by

asserting WOVR.

The up or down code

for the selected PCELL is written to PSEQ when WPCTR is asserted. This code feeds to the

control logic on the CTL module which selects the PINC (increment) or MINC (decrement)

instruction subsequence to bump the priority counter up or down.

The PINC and MINC subsequences are inserted between normal instruction subsequences. A

SHINC subsequence implements a bit-shift which is used to load telemetry bits into the AGC

and assemble them into words. SHINC is not implemented in this AGC replica.

PROC Internal Subsystem Interconnections

This diagram shows internal interconnections for the subsystems in the PROC module.

PROC Module External Interfaces

The PROC module interfaces to the CTL, MEM, and IO modules through 40-pin IDE ribbon

cables.

J100-PROC: PROC-to-CTL I/F

J100 is a 40-pin IDE cable that connects the PROC module to the CTL module.

INPUTS (to PROC):

PIN signal full name state definition

1 WA3 WRITE ADDR 3 (74) 0=Write reg at address 3 (LP)

2 WA2 WRITE ADDR 2 (73) 0=Write reg at address 2 (Z)

3 WA1 WRITE ADDR 1 (72) 0=Write reg at address 1 (Q)

4 WA0 WRITE ADDR 0 (71) 0=Write reg at address 0 (A)

5 RA3 READ ADDR 3 (60) 0=Read reg at address 3 (LP)

6 RA2 READ ADDR 2 (59) 0=Read reg at address 2 (Z)

7 RA1 READ ADDR 1 (58) 0=Read reg at address 1 (Q)

8 RA0 READ ADDR 0 (57) 0=Read reg at address 0 (A)

9 WZ WRITE Z (50) 0=Write Z

10 WYx WRITE Y NO RESET (49) 0=Write Y (do not reset)

11 WY WRITE Y (48) 0=Write Y

12 WX WRITE X (47) 0=Write X

13 WQ WRITE Q (45) 0=Write Q

14 WOVR WRITE OVF (41) 0=Write overflow

15 WOVI WRITE OVF RUPT INH (40) 0=Write overflow RUPT inh ibit

16 WOVC WRITE OVF CNTR (39) 0=Write overflow counter

17 WLP WRITE LP (38) 0=Write LP

18 WB WRITE B (36) 0=Write B

19 WALP WRITE A/LP (35) 0=Write A and LP

20 WA WRITE A (34) 0=Write A

21 F10X F10 SCALER ONESHOT 1=timed out (100.0 Hz)

23 R24 READ 24 (25) 0=Read 24

24 R22 READ 22 (24) 0=Read 22

25 R2 READ 2 (23) 0=Read 2

26 R1C READ 1 COMP (22) 0=Read 1 complimented

27 R1 READ 1 (21) 0=Read 1

28 RZ READ Z (20) 0=Read Z

29 RU READ U (19) 0=Read sum

30 RSCT READ CNTR ADDR (18) 0=Read selected counter address

31 RSB READ SIGN (17) 0=Read sign bit

32 RRPA READ RUPT ADDR (16) 0=Read RUPT address

33 RQ READ Q (15) 0=Read Q

34 RLP READ LP (13) 0=Read LP

35 RC READ C (11) 0=Read C

36 RB14 READ BIT 14 (10) 0=Read bit 14

37 RB READ B (9) 0=Read B

38 RA READ A (8) 0=Read A

39 KRPT KNOCK DOWN RUPT (6) 0=Knock down Rupt priority

40 CI SET CARRY IN (1) 0=Carry in

J101-PROC: PROC-to-CTL I/F

J101 is a 40-pin IDE cable that connects the PROC module to the CTL module.

INPUTS (to PROC):

PIN signal full name state definition

1 R2000 READ 2000 (101) 0=Read 2000

2 WPCTR WRITE PCTR (98) 0=Write PCTR (latch priority counter seq)

3 RPT READ RUPT (94) 0=Read RUPT opcode

4 INH SET INHINT (93) 0=Set INHINT

5 CLRP CLEAR RPCELL (92) 0=Clear RPCELL

6 CLINH1 CLEAR INHINT1 (88) 0=Clear INHINT1

7 CLINH CLEAR INHINT (87) 0=Clear INHINT

8 GENRST GENERAL RESET (86) 0=General Reset

19 CLK1 CLOCK1 1.024 MHz AGC clock 1 (normally low)

20 CLK2 CLOCK2 1.024 MHz AGC clock 2 (normally low)

OUTPUTS (from PROC):

PIN signal full name state definition

21 SB_01 SUB SEL 01 SB_01 is LSB; SB_02 is MSB

22 SB_02 SUB SEL 02 00=no counter; 01=PINC; 10=MINC

23 IRQ INT RQST 0=interrupt requested.

25 WB_01 WRITE BUS 01 (lsb)

26 WB_02 WRITE BUS 02

27 WB_03 WRITE BUS 03

28 WB_04 WRITE BUS 04

29 WB_05 WRITE BUS 05

30 WB_06 WRITE BUS 06

31 WB_07 WRITE BUS 07

32 WB_08 WRITE BUS 08

33 WB_09 WRITE BUS 09

34 WB_10 WRITE BUS 10

35 WB_11 WRITE BUS 11

36 WB_12 WRITE BUS 12

37 WB_13 WRITE BUS 13

38 WB_14 WRITE BUS 14

39 WB_15 WRITE BUS 15 US (overflow) bit

40 WB_16 WRITE BUS 16 SG (sign) bit

J104-PROC: PROC-to-IO I/F

J104 is a 40-pin IDE cable that connects the PROC module to the IO module.

INPUTS (to PROC):

PIN signal full name state definition

40 RB_01 READ BUS 01 (lsb)

39 RB_02 READ BUS 02

38 RB_03 READ BUS 03

37 RB_04 READ BUS 04

36 RB_05 READ BUS 05

35 RB_06 READ BUS 06

34 RB_07 READ BUS 07

33 RB_08 READ BUS 08

32 RB_09 READ BUS 09

31 RB_10 READ BUS 10

30 RB_11 READ BUS 11

29 RB_12 READ BUS 12

28 RB_13 READ BUS 13

27 RB_14 READ BUS 14

26 RB_15 READ BUS 15 US (overflow) bit

25 RB_16 READ BUS 16 SG (sign) bit

22 BUSY2 READ BUS BUSY 0=OUT register output to read bus

21 BUSY1 READ BUS BUSY 0=INP register output to read bus

20 KB_STR KEY STROBE 1=key pressed strobe; to KEYRUPT. Key

data is valid on the negative edge of

KB_STR. Data is latched until the next

keypress.

OUTPUTS (from PROC):

PIN signal full name state definition

1 WB_01 WRITE BUS 01 (lsb)

2 WB_02 WRITE BUS 02

3 WB_03 WRITE BUS 03

4 WB_04 WRITE BUS 04

5 WB_05 WRITE BUS 05

6 WB_06 WRITE BUS 06

7 WB_07 WRITE BUS 07

8 WB_08 WRITE BUS 08

9 WB_09 WRITE BUS 09

10 WB_10 WRITE BUS 10

11 WB_11 WRITE BUS 11

12 WB_12 WRITE BUS 12

13 WB_13 WRITE BUS 13

14 WB_14 WRITE BUS 14

15 WB_15 WRITE BUS 15 US (overflow) bit

16 WB_16 WRITE BUS 16 SG (sign) bit

J105-PROC: PROC-to-MEM I/F

J105 is a 40-pin IDE cable that connects the PROC module to the MEM module.

INPUTS (to PROC):

PIN signal full name state definition

40 RB_01 READ BUS 01 (lsb)

39 RB_02 READ BUS 02

38 RB_03 READ BUS 03

37 RB_04 READ BUS 04

36 RB_05 READ BUS 05

35 RB_06 READ BUS 06

34 RB_07 READ BUS 07

33 RB_08 READ BUS 08

32 RB_09 READ BUS 09

31 RB_10 READ BUS 10

30 RB_11 READ BUS 11

29 RB_12 READ BUS 12

28 RB_13 READ BUS 13

27 RB_14 READ BUS 14

26 RB_15 READ BUS 15 US (overflow) bit

25 RB_16 READ BUS 16 SG (sign) bit

22 BUSY7 READ BUS BUSY 0=BNK register output enabled to read

bus

21 BUSY5 READ BUS BUSY 0=G register output enabled to read bus

OUTPUTS (from PROC):

PIN signal full name state definition

1 WB_01 WRITE BUS 01 (lsb)

2 WB_02 WRITE BUS 02

3 WB_03 WRITE BUS 03

4 WB_04 WRITE BUS 04

5 WB_05 WRITE BUS 05

6 WB_06 WRITE BUS 06

7 WB_07 WRITE BUS 07

8 WB_08 WRITE BUS 08

9 WB_09 WRITE BUS 09

10 WB_10 WRITE BUS 10

11 WB_11 WRITE BUS 11

12 WB_12 WRITE BUS 12

13 WB_13 WRITE BUS 13

14 WB_14 WRITE BUS 14

15 WB_15 WRITE BUS 15 US (overflow) bit

16 WB_16 WRITE BUS 16 SG (sign) bit

PROC CONTROL PANEL PUSHBUTTONS

RUPT1 Set the RUPT1 flip-flop (FF). Simulates a TIME3 overflow. Triggers a T3RUPT.

RUPT3 Set the RUPT3 flip-flop (FF). Simulates a TIME4 overflow. Triggers a T4RUPT

(DSRUPT).

RUPT4 Set the RUPT4 flip-flop (FF). Simulates a DSKY keypress. Triggers a KEYRUPT.

TIME1 Set the TIME1 flip-flop (FF). Increments the low-order word of the AGC

real-time clock.

TIME2 Set the TIME2 flip-flop (FF). Increments the high-order word of the AGC

real-time-clock.

TIME3 Set the TIME3 flip-flop (FF). Increments the general purpose timer.

TIME4 Set the TIME4 flip-flop (FF). Increments the display update timer.

PROC CONTROL PANEL CONNECTIONS

PIN signal state definition

1 RUPT1 GND=set RUPT1 FF

2 RUPT3 GND=set RUPT3 FF

3 RUPT4 GND=set RUPT4 FF

4 TIME1 GND=set TIME1 FF

5 TIME2 GND=set TIME2 FF

6 TIME3 GND=set TIME3 FF

7 TIME4 GND=set TIME4 FF

8 GND

PROC INDICATORS

The PROC module has a panel of indicator lamps (LEDs) to show the state of PROC registers

and critical logic signals.

These indicator lamps

show the current state of

all registers and some

additional, important

logic signals produced by

the PROC module. AGC

numbers are represented

in octal, so all register

lamps are in groups of

three. At the time the

photo was taken the

AGC was running

the COLOSSUS 249

flight software load,

executing Verb 16, Noun

36: a monitor verb

which displays the AGC

real time clock.

ALU (Arithmetic Logic Unit)

My earliest architectural representation of the ALU logic is shown below:

The ALU contains the 16-bit ADDER (colored orange in the diagram) which performs 1's

complement arithmetic, and increments the program counter (Z register). Each orange box is

a 4-bit parallel adder; collectively, they add 16 bits. The ADDER uses the X, Y, and U

registers:

X: the 16-bit extension register (2 8-bit registers in yellow) that holds one of two inputs

to the ADDER.

Y: the 16-bit extension register (also in yellow) that holds the other input to the ADDER.

U: the ADDER output (the 1's complement sum of the contents of registers X and Y).

Outputs to the bus labeled “B” on the diagram.

The ALU also contains the B and C registers:

B: a general-purpose buffer register (shown as 2 8-bit registers in yellow), also used to

pre-fetch the next instruction. At the start of the next instruction sequence, the upper

bits of B (containing the next op code) are copied to the SQ register (in CTL), and the

lower bits (the address) are copied to the S register in (MEM). Output to the bus

labeled “A” on the diagram.

C: not a separate register, but the 1's complement of B.

The ALU contains logic (using

74LS181 ALU chips, shown in

green) to do any of the following:

select the B register; select the

complement of the B register (the

“C” register); select the U register;

select the C register OR’ed with U,

or select logical zero. Those logic

functions, needed for AGC

operation, are shown in the upper

right corner of the diagram. The

outputs of the 74LS181 selector are

gated through a buffer to the read

bus.

The original AGC could inclusive OR

the outputs of any combination of

registers onto the bus, but the

control module only used this

feature for the B/C and U registers.

One of the uses involved the MASK

instruction, which is a logical AND:

DeMorgan's theorem was used to

implement the equivalent of a

logical AND by inverting operands

through the C register, performing a

logical OR through the bus, and

then inverting the result.

The 74LS181 logic functions are

gated to the read bus through the

data selector logic, shown in the adjacent diagram.

The ALU also transfers data from the

READ bus to the WRITE bus for

register-to-register data moves: Data

is output from the source register

onto the READ bus, then transferred

from the READ bus to the WRITE bus

through the ALU, and finally loaded

from the WRITE bus into the

destination register.

The logic that translates the READ

bus to the WRITE bus can also force

the data lines of the WRITE bus to

specific states to gate various

arithmetic constants onto the bus.

The accompanying diagram shows

the the control signal on the left

(RB14, R1, etc) and to the right is

the bit pattern that’s OR’ed onto the

bus when the signal is asserted. The

default state of the read bus is

logical zero, so if no other read signal

is asserted, the number that appears

on the bus is the constant;

otherwise, it’s the constant inclusive

OR’ed with the contents of the READ

bus.

The ALU contains READ bus control

logic. Registers in the MEM module,

the central registers in the PROC

module, and the ALU all interface to

the READ bus through tri-state

buffers. These buffers are normally in

the high-impedance state, but the

control module (CTL) issues READ

control signals to output the contents

of specific registers to the READ bus

at certain times. Only one register

should be gated onto the READ bus

at any given time.

When no READ control signals are asserted, the ALU gates its output onto the READ bus by

default. When the control module gates a register onto the READ bus, a BUSY signal is sent

to the ALU module, which causes the ALU to inhibit its output. Because of propagation

delays, the ALU might continue to output to the READ bus for a brief time while another

register is also gated to the bus. To prevent this, all output to the read bus is inhibited during

CLK1. This gives the control signals, which transition on the leading edge of CLK1, enough

setup time to resolve the conflict.

ALU INPUTS:

I/F signal full name state definition

CLK:

CLK1 CLOCK 1 1=read bus setup; inhibit read bus out

CLK2 CLOCK 2 data transfer occurs on falling edge

CPM:

RB READ B 0=output B register to write bus

RC READ C 0=output comp of reg B (C) to write bus

RU READ G 0=output U register to write bus

R1 READ OCTAL 1 0=incl OR 000001 w/write bus

R1C READ OCTAL -1 0=incl OR 177776 w/write bus

R2 READ OCTAL 2 0=incl OR 000002 w/write bus

R22 READ OCTAL 22 0=incl OR 000022 w/write bus

R24 READ OCTAL 24 0=incl OR 000024 w/write bus

R2000 READ OCTAL 2000 0=incl OR 002000 w/write bus

RB14 READ BIT14 0=incl OR 020000 w/write bus

RSB READ SIGN BIT 0=incl OR 100000 w/write bus

WB WRITE B 0=write into B from write

bus

CI WRITE CI 0=set carry register to 1

WY WRITE Y 0=write Y

WX WRITE X 0=write into X from write

bus

WYX WRITE Y 0=write into Y from write

bus

RBUS:

RB_01 READ BUS 01

...

RB_14 READ BUS 14

RB_15 READ BUS 15 US (overflow) bit for read

bus

RB_16 READ BUS 16 SG (sign) bit for read bus

INP: BUSY1 READ BUS BUSY 0=valid data from INP on

read bus

OUT: BUSY2 READ BUS BUSY 0=valid data from OUT on

read bus

CTR: BUSY3 READ BUS BUSY 0=valid data from CTR on

read bus

INT: BUSY4 READ BUS BUSY 0=valid data from INT on read bus

MBF: BUSY5 READ BUS BUSY 0=valid data from MBF on read bus

CRG: BUSY6 READ BUS BUSY 0=valid data from CRG on read bus

ADR: BUSY7 READ BUS BUSY 0=valid data from ADR on read bus

MBF OUTPUTS:

I/F signal full name state definition

WBUS:

WB_01 WRITE BUS 01

...

WB_14 WRITE BUS 14

WB_15 WRITE BUS 15 US (overflow) bit for write bus

WB_16 WRITE BUS 16 SG (sign) bit for write bus

CRG (Central Register)

The AGC has four 16-bit registers for general computational use. These are called the

"central registers":

A: the 16-bit accumulator, used

for general computation.

Z: the 16-bit program counter,

which contains the address of

the next instruction to be

executed.

Q: the 16-bit register used to

hold the remainder in the DV

instruction, and to hold the

return address after TC

instructions.

LP: the 16-bit register used to

hold the lower product after

MP instructions.

Register A and LP shifters

In addition to “normal” control pulses that write each line of the write bus into the

corresponding bit of the registers, the A and LP registers have special write control pulses

that shift bits:

The WALP control pulse bit-shifts into the A and LP register. The table below shows how the

shifter works. The row of 16 comma-separated entries represent bits in the register. The

leftmost position is the register MSB, rightmost position is the LSB. The entry shows the bit

of the WRITE bus that’s mapped onto that register bit by the shifter.

For the WALP pulse, bit 1 of the WRITE bus (B1) is written into bit 14 of the LP register. “BX”

means leave that bit of the register alone (don’t change it).

The same WALP pulse causes bit 2 of the WRITE bus (B2) to be written into the lowest bit of

the A register, bit 3 of the WRITE bus (B3) to be written into the next bit, and so forth. “US”

(uncorrected sign) is the overflow bit (bit 15) of the WRITE bus. “SG” is the 1's complement

sign (bit 16) from the WRITE bus.

WALP for register LP:

BX, BX, B1, BX, BX, BX, BX, BX, BX, BX, BX, BX, BX, BX, BX, BX

WALP for register A:

SG, SG, US, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2

Similarly, the WLP control pulse bit-shifts the WRITE bus into the LP register as follows (D0

on bit 14 of the LP register means force the bit to zero):

WLP

B1, B1, D0, B14, B13, B12, B11, B10, B9, B8, B7, B6, B5, B4, B3, B2

The logic design for handling bit 14 of the LP

register, which takes control inputs from

WALP, WLP, and WA3 is shown here. WA3 is

identical to WLP.

Depending upon the WALP, WLP, or WA3

inputs, bit 14 of LP will either be set to B1 of

the WRITE bus, or forced to zero.

CRG INPUTS:

I/F signal full name state definition

CLK:

CLK1 CLOCK 1 1=read bus setup; inhibit read bus output

CLK2 CLOCK 2 data transfer occurs on falling edge

CPM:

RA READ A 0=output A to read bus

RA0 READ A 0=output A to read bus

RQ READ Q 0=output Q to read bus

RA1 READ Q 0=output Q to read bus

RZ READ Z 0=output Z to read bus

RA2 READ Z 0=output Zto read bus

RLP READ LP 0=output LPto read bus

RA3 READ LP 0=output LP to read bus

WA WRITE A 0=load A from write bus

WA0 WRITE A 0=load A from write bus

WQ WRITE Q 0=load Q from write bus

WA1 WRITE Q 0=load Q from write bus

WZ WRITE Z 0=load Z from write bus

WA2 WRITE Z 0=load Z from write bus

WALP WRITE A,LP 0=load A,LP from write

bus

WLP WRITE LP 0=load LP from write bus

GENRST GENERAL RESET 0=General Reset

WBUS:

WB_01 WRITE BUS 01

...

WB_14 WRITE BUS 14

WB_15 WRITE BUS 15 US (overflow) bit for write bus

WB_16 WRITE BUS 16 SG (sign) bit for write bus

MBF OUTPUTS:

I/F signal full name state definition

RBUS:

RB_01 READ BUS 01

...

RB_14 READ BUS 14

RB_15 READ BUS 15 US (overflow) bit for read/write bus

RB_16 READ BUS 16 SG (sign) bit for read/write bus

BUSY READ BUS BUSY 0=output enabled to read bus

INT (Interrupt Priority)

The original AGC had five vectored interrupts. This recreation implements the following 3:

RUPT1 Also called T3RUPT because it's triggered by overflow of the TIME3 priority

counter.

RUPT3 Also called T4RUPT because it's triggered by overflow of the TIME4 priority

counter. Because the interrupt is used by software to update the DSKY display

at regular intervals, it's sometimes called DSRUPT.

RUPT4 Triggered by a key press from the user's keyboard. Also called KEYRUPT.

The AGC software responds to each interrupt by temporarily suspending the current program,

executing a short interrupt service routine, and then resuming the interrupted program.

INT INPUTS:

I/F signal full name state definition

CLK:

CLK1 CLOCK 1 1=read bus setup; inhibit read bus out

CLK2 CLOCK 2 data transfer occurs on falling edge

CPM:

GENRST GENERAL RESET 0=reset INT registers

RRPA READ RUPT ADDRESS 0=output RPCELL address

(2004,2010,2014,2020,2024) to read bus

RPT READ RUPT OPCODE 0=load RUPT opcode into RPCELL register

KRPT KNOCK DOWN RUPT PRIO 0=reset RUPT latch currently selected by

RPCELL register

CLRP CLEAR RPCELL 0=clear RPCELL register

WOVI WRITE OVF RUPT INH 0=test overflow; if

overflow, inhibit interrupt

(set INHINT1)

CLINH1 CLEAR INHINT1 0=clear INHINT1 register

INH SET INHINT 0=set INHINT register

CLINH CLEAR INHINT 0=clear INHINT register

WBUS:

WB_15 WRITE BUS 15 US (overflow) bit for write

bus

WB_16 WRITE BUS 16 SG (sign) bit for write bus

CTR/KBD:

RUPT1 INTERRUPT 1 0=trigger interrupt 1 (2004 octal; TIME3

overflow)

RUPT3 INTERRUPT 3 0=trigger interrupt 3 (2014 octal; TIME4

overflow)

RUPT4 INTERRUPT 4 0=trigger interrupt 4 (negative edge)

(2020 octal; keyboard activity)

Note: interrupt cells above RUPT4 not implemented.

INT OUTPUTS:

I/F signal full name state definition

SEQ:

IRQ INT RQST 0=interrupt requested. Active if allof the

following are true:

a) one or more RUPT FF's are set

b) interrupt is not currently being serviced

c) interrupts are not inhibited

RBUS:

RB_01 READ BUS 01

...

RB_14 READ BUS 14

RB_15 READ BUS 15 US (overflow) bit for read/write bus

RB_16 READ BUS 16 SG (sign) bit for read/write bus

BUSY READ BUS BUSY 0=output enabled to read bus

CTR (Priority Counter)

The Block I AGC had 20 memory locations dedicated as up/down counters (involuntary

counters). The counters would increment or decrement in response to external plus or minus

logic signals. Increment (PINC) or decrement (MINC) was handled by one subsequence of

microinstructions inserted between any two regular instruction subsequences when counter

inputs occurred.

This replica implements 5 counters used by the AGC operating system and user interface:

Counter Addr Description

OVCTR 34 An overflow counter incremented (PINC) or decremented (MINC) when

overflow conditions occur during certain instructions.

TIME2 35 The high-order bits of the AGC clock; incremented (PINC) by overflow

of TIME1.

TIME1 36 The low-order bits of the AGC clock; incremented (PINC) by a 100Hz

signal from the SCALER (SCL) in the control module (CTL).

TIME3 37 A general purpose timer incremented by a 100Hz signal from the

SCALER (SCL) in the control module (CTL).

TIME4 40 A special purpose timer used for software update of the DSKY display.

Incremented by a 100Hz signal from the SCALER (SCL) in the control

module (CTL).

INT/CTR interface

This chart shows how counter

overflows are handled. F10 (from

the scaler) increments TIME1,

TIME3, and TIME4.

A positive overflow of TIME1

causes an increment of TIME2.

Positive overflow of TIME3

triggers a T3RUPT interrupt.

Positive overflow of TIME4

triggers a DSRUPT (T4RUPT)

interrupt.

The addresses of TIME1 and

TIME2 are reversed for Block II.

This chart shows the Block I

order, but my replica used the

Block II order for compatibility

with the COLOSSUS flight

software.

CTR Design Problem

During unit testing, I uncovered a bug in my implementation of CTR: The plus inputs set the

P-cell which eventually triggers a PINC subsequence and increments the counter. Minus

inputs set the M-cell, which triggers a MINC subsequence and decrements the counter.

Near-simultaneous plus and m inus inputs should cancel out, producing no change in count.

As a consequence, the counter logic was designed so that, if the P- and M-cells are both set,

no counter sequence (PINC or MINC) is selected. The problem is, the P- and M-cells are reset

by WOVR, which only occurs in PINC or MINC. So, if both cells are set--and therefore, no

subsequence is selected--WOVR is never issued, the cells never reset, and all counting

activity is disabled for that counter.

Here are the options I developed fixing the design:

a) Create a new subsequence similar to PINC or MINC that issues WOVR, but does not

change the counter. Select this new subsequence when the P- and M-cells are simultaneously

set.

b) Allow the P- and M-cells to trigger PINC and MINC sequences, resulting in a net change of

zero to the counter.

c) Leave the design as-is, because the M-cell is only used for OVCTR in my implementation,

and therefore, the problem can never occur.

I choose option C to avoid redesign and re-unit-testing of CTR.

CTR INPUTS:

I/F signal full name state definition

CLK:

CLK1 CLOCK 1 1=read bus setup; inhibit read bus out

CLK2 CLOCK 2 data transfer occurs on falling edge

CPM:

GENRST GENERAL RESET 0=reset CTR registers

WPCTR WRITE PSEQ 0=write sequence into

PSEQ

RSCT READ PCELL ADDRESS 0=output PCELL address

(034-043) to read bus

WOVC WRITE OVRFLOW CNTR 0=test overflow and

inc/dec OVCTR

WOVR WRITE OVERFLOW 0=clear selected PCELL

and handle

counter overflow (if any)

WBUS:

WB_15 WRITE BUS 15 US (overflow) bit for

write bus

WB_16 WRITE BUS 16 SG (sign) bit for write

bus

EXTERNAL:

P3P P3 CELL + COUNT 0=count up P3 counter

(036 octal; TIME1)

P4P P4 CELL + COUNT 0=count up P4 counter

(037 octal; TIME3)

P5P P5 CELL + COUNT 0=count up P5 counter

(040 octal, TIME4)

Note: priority cells 6-20 not implemented.

CTR OUTPUTS:

I/F signal full name state definition

COUNTER OVERFLOW:

CPO_04 P4 + OVERFLOW 0=P4 cell pos ovf (during WOVR)

note: TIME3 + overflow; connect

to INT subsystem to trigger T3RUPT

interrupt.

CPO_05 P5 + OVERFLOW 0=P5 cell pos ovf (during WOVR)

note: TIME4 + overflow; connect

to INT subsystem to trigger T4RUPT

(DSRUPT) interrupt.

SEQ:

SB_01 SUB SEL 01 SB_01 is LSB; SB_02 is MSB

SB_02 SUB SEL 02 00=no counter; 01=PINC; 10=MINC

RBUS:

RB_01 READ BUS 01

...

RB_14 READ BUS 14

RB_15 READ BUS 15 US (overflow) bit for read/write bus

RB_16 READ BUS 16 SG (sign) bit for read/write bus

BUSY READ BUS BUSY 0=output enabled to read bus

Fabrication

The PROC module is (4) 13"x5" circuit boards, and 1 control panel.

Module Rack

The module framework is designed

to resemble a relay rack, but scaled

to fit the circuit board dimensions.

It is constructed out of 1"x2" pine

and spray-painted semi-gloss gray.

Circuit boards are mounted to the

rack by 2 phillips screws at either

end. Nylon spacers (1/4") are used

as standoffs to hold the board

edges above the rack. The boards

are mounted so the chips are in the

back and the pins are wiring are

visible from the front.

Power is distributed by 2 heavy

aluminum bus bars mounted

vertically, one per side, on the back

of the module. Machine screws are

mounted through the bus bars at

evenly-spaced intervals to provide

connection points for the boards.

Solid copper wire (24 gauge) connects the boards to the bus bars. Ring terminals are used

on the bus bar side of the connection. On the circuit board size, the wires are soldered

directly to the supply rails.

Materials were purchased from Home Depot, ACE Hardware, and Radio Shack.

Circuit Boards

The circuit boards are 13"x5" general purpose prototyping boards, epoxy glass with double-

side plated through pads on 0.1" centers (JAMECO 21477CL).

ICs are mounted in level 3 machine tooled wire-wrap sockets: 8, 14,

16, 20, 24, and 28 pin (JAMECO). Each socket has the pin-out labeled

with a w ire-wrap socket ID marker, which slips onto the socket before

wrapping (JAMECO). The part number is written onto the ID marker.

Sockets are arranged in 4 horizontal rows on each board, with about

10 sockets per row.

Power is distributed on the back-side of each board by bare 24-gauge

solid copper wire supply rails soldered at equal intervals to Klipwrap terminals: 3-prong

terminals with a square tail for wire-wrapping (JAMECO 34163CL). A +5V rail runs above

each row of sockets and a ground rail runs below. Each rail connects directly to the aluminum

module power bus using a ring tail connector.

On the pin side of the board, all connections are made with 30 AWG Kynar wire-wrap wire

(JAMECO). Red wire is used for direct connections to the +5V supply rail. Black wire is used

for direct connections to ground. White wire is used for everything else.

Power connections from the supply rails to each ICs are double-wrapped. Bypassing

capacitors (.1 uf disc) are soldered across the supply rails at the Klipwrap terminals; about 1

capacitor for every 2 IC packages.

All connections were stripped and hand-wrapped using a Radio Shack hand-wrap tool. As

each connection was made, the corresponding line on the schematic was marked with a

colored highlighter.

DIP resistor networks (JAMECO) plugged into 20-pin wire-wrap sockets were used as current

limiting resistors for the panel indicators.

PROC Printed Circuit Board (PCB) A

The A board contains display drivers for the B board (left side), buffers for the interfaces to

external modules (bottom right), and priority counter logic (upper right). Sockets for 3 IDE

interface cables to external modules are visible at the bottom.

PROC Printed Circuit Board (PCB) B

The B board contains the display indicators, their current limiting resistor networks, and the

open collector drivers. The display panel is a sheet of white styrene plastic. A push pin was

used to make holes through the plastic and the LEDs were inserted in rows. The panel was

hand-lettered with an indelible marker.

PROC Printed Circuit Board (PCB) C

The C board contains the the logic for the interrupt (INT) subsystem (upper half of the

board), and the central registers (CRG; lower half of the board).

PROC Printed Circuit Board (PCB) D

The D board contains the ALU logic. The large 74181 ALU chips are at the bottom right. The

four chips that form the ADDER are in the bottom half of the board, slightly to the right of

the middle.

Parts (ICs)

IC’s, sockets, PCB’s, resistors, capacitors, wire-wrap wire were purchased from JAMECO. IDE

wire-wrap sockets were from DigiKey. Wire ties, wire-wrap tools, and copper wire were from

Radio Shack. IDE ribbon cables were purchased from an online computer supplier.

74LS00 (9) U60,U66,U57,U53,U51,U44,U46,U47,U42

74LS02 (4) U70,U6,U49,U2

74LS04 (11) U54,U45,U37,U68,U7,U36,U69,U71,U59,U48,U72

74LS06 (26) U28,U29,U30,U31,U27,U26,U23,U24,U25,U22,U21,U20,U18,U19,U17,U

16,U15,U12,U13,U14,U11,U10,U35,U34,U33,U32

74LS08 (4) U63,U61,U56,U52

74LS10 (2) U50,U43

74LS20 (2) U67,U73

74LS21 (1) U1

74LS27 (1) U9

74LS32 (5) U4,U41,U40,U39,U38

74LS83 (4) U134,U135,U136,U137

74LS86 (1) U5

74LS112 (7) U65,U64,U62,U58,U55,U8,U3

74LS138 (4) U84,U85,U86,U94

74LS148 (2) U93,U97

74LS151 (2) U87,U88

74LS181 (4) U130,U131,U132,U133

74LS244 (33) U74,U75,U76,U77,U78,U79,U80,U81,U82,U83,U89,U90,U95,U96,U101,

U102,U104,U105,U108,U111,U112,U115,U116,U117,U118,U119,U120,

U121,U122,U124,U125,U128,U129

74LS273 (19) U91,U92,U98,U99,U100,U103,U106,U107,U109,U110,U113,U114,U123

,U126,U127,U138,U139,U140,U141

Power Budget

qty mA (ea) mA (tot)

74LS00 9 2.4 21.6

74LS02 4 2.4 9.6

74LS04 11 3.6 39.6

74LS06 26 3.6 93.6

74LS08 4 4.4 17.6

74LS10 2 1.8 3.6

74LS20 2 1.2 2.4

74LS21 1 2.2 2.2

74LS27 1 3.4 3.4

74LS32 5 4.9 24.5

74LS83 4 22.0 88.0

74LS86 1 6.1 6.1

74LS112 7 4.0 28.0

74LS138 4 6.3 25.2

74LS148 2 12.0 24.0

74LS151 2 6.0 12.0

74LS181 4 21.0 84.0

74LS244 33 32.0 1056.0

74LS273 19 17.0 323.0

LED 153 20.0 3060.0

4.9 Amps total

1.9 Amps (excluding LEDs)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62

