
SPECIAL SECTION

Paul Schneck
Guest Editor Design, Development,

Integration: Space Shuttle
Primary Flight Software System
The development of Space Shuttle software posed unique requirements above
and beyond raw size (30 times larger than Saturn V software), complexity,
and criticality.

WILLIAM A. MADDEN and KYLE Y. RONE

The design, development, and integration of the Shuttle
on-board Primary Avionics Software System (PASS)
have posed unique requirements associated with few
other aerospace or commercial software systems. These
challenges stem from its size and complexity, its criti-
cality to completion of the Space Shuttle mission, and
from the fact that it is only one of many components of
an overwhelmingly complex state-of-the-art Space
Transportation System (STS).

With respect to size and complexity, the software
being readied for the first orbital flight test (STS-1) of
the Shuttle is actually eight separately executable pro-
grams or memory configurations sharing a common op-
erating system. These programs are stored on a mass
memory tape device and are loaded into the on-board
computers on crew request (Figure 1). Each is designed
to perform the set of support functions required for the
different ground and in-flight phases of Shuttle opera-
tions. In all, these eight programs, including the soft-
ware operating system, comprise approximately one-
half million 32-bit words of data and executable in-
structions. The size is at least 30 times that of the Sat-
urn V flight software system.

SOFTWARE IS KEY TO SHUTTLE FUNCTIONS
Without software, the Space Shuttle cannot fly. There
are few functions integral to the Shuttle operation for
which the software does not perform computational

The present tense of this article, as published in 1980-1981, has been retained
in republication.

services. It is responsible for the guidance, navigation,
and flight control functions performed during all flight
phases. This includes both the gathering of environ-
ment and sensor input data and the issuing of com-
mands to the vehicle effectors (engines and aerosur-
faces). It supports all vehicle/ground interface func-
tions with the Launch Processing System at the Ken-
nedy Space Center prior to vehicle lift-off through the
launch data bus (LDB). During in-flight operation, the
network signal processing (NSP) interface functions are
used for processing of data and/or commands received
from the Mission Control Center at the Johnson Space
Center. Other software functions include the manage-
ment and monitoring of on-board systems, fault detec-
tion and annunciation, and preflight and preentry
checkout and sating procedures.

To obtain the required "Fail-operational/Fail-safe"
reliability, the software in certain critical flight phases
must execute redundantly in multiple computers. To
achieve this redundancy, an intercomputer synchroni-
zation scheme has been developed to guarantee identi-
cal inputs and outputs from the redundant computers.
It also provides such functions as computer synchroni-
zation at rates of up to 330 times per second and control
of input data to ensure that all computers receive iden-
tical information from redundant sensors whether or
not hardware failures have occurred.

Above and beyond the size, complexity, and critical-
ity of the software, several other factors contributed to
complexity of the development problem. The overall

014 Communications of the ACM September 1984 Volume 27 Number 9

Special Section

Shuttle program schedules required that the software
be certified and ready to support the first orbital flight.
However, the detailed definition of all requirements
could not be completed in time to support a proven
software design, implementation, and verification de-
velopment cycle (Figure 2) due to the ongoing vehicle
engineering analysis work. Additionally, the Orbiter
avionic integration and certification activities per-
formed at Houston, Downey, California, Palmdale, Cali-
fornia, and at the Kennedy Space Center required the
use of the software very early in the development cycle
to accomplish certification responsibilites. To satisfy
these conflicting demands and still deliver a fully veri-
fied, error-free software system consistent with Shuttle
flight schedules, a development strategy was evolved
that preserved the effectiveness of the proven develop-
ment cycle and satisfied the customer requirements.
This paper describes the major elements of the devel-
opment strategy that evolved. Aspects of the succeeding
verification and maintenance phases are not addressed
here.

EARLY INVOLVEMENT IN CUSTOMER
REQUIREMENTS
From an idealistic viewpoint, software should be devel-
oped from a concise set of requirements that are de-

fined, documented, and established before implementa-
tion begins. The requirements on the Shuttle program,
however, evolved during the software development
process. The requirements were developed over a long
period of time with significant change activity occur-
ring after each baseline (Figure 3). Strong interfaces
with the requirements originators were developed to
gain an early understanding of the changes. Used in the
development planning process, this insight enabled ac-
curate and timely software deliveries to users.

Several factors contributed to the changes in the re-
quirements baseline. Primary among these was the tim-
ing of the vehicle test program. Because test facility
resources were being established concurrently and the
vehicle was not available, critical aerodynamic and
structural tests were scheduled after the initial set of
detailed requirements was provided. The initial re-
quirements were formulated with the intent of incorpo-
rating the results of these tests with data changes only;
however, these goals were not completely realized and
some significant software design changes resulted.

The second most significant factor affecting the re-
quirements was on-board computer resources (core and
CPU). Early in the development cycle, projections indi-
cated that the computer capacity would be exceeded in
both size (core) and load (CPU). After the initial soft-

Function

OPS

• DPS H/~V
Interface and
Checkout

• Subsystem
~ o u t

SM 9

• IMU Calib~atio(1
arid AJignrrlent

• Control System
end Display
Checkout

~ GNC 9

~¢r

"'m''un'h I I'-- l's' y m'°n°rngl Count • Guidance, Subsystems • Fault Annunciation • Guidance,
• Guidance, Navigabsn, • Guidance, Navtga~on, • Payload Bay Door Navigation,

Navigation. Flight Right Control Right Cootrol Operation Flight Control
Control • Antenna Management

~' G N C 1 / 6 ~GNC2 ~' G N C 8 ~' S M 2 ~ ' G N C 3

• Mass Memory
Alterations

PL9

Ascent/Aborts On-Orbit Checkout Systems Management (101.1K) Ut~y
(105.2K) (83.1 K) (80.3K) (84.1 K) (70.1 K)

*32-B~t Woods (Includes Opecating System)

Y Y •

5 / , ~ ' ' ~ ' Main Engine Cutoff " ~ / • I
/ ~ia1~.~Z ' Abort-Once-Around Entry ~X ~'~o,°a ~`

..... ,o I l~t~r0S'l~nglSS~ Du~tiOn=54Hrs'30Min* I
X. " ' ' ~A,~r ~ %

I Preflight I

~_.#.~_ © " l.~-Off

MinOS
20 Minutes

FIGURE 1. Shuttle Mission Profile and Software Memory Configurations

September 1984 Volume 27 Number 9 Communications of the ACM 915

Special Section

• ,~

~ ~ ~ .|

m

E~E

~NB

m

-.~ ~

- ~ ~ 8 ~ ~ ~8

~ ~ .~_

og - - F--~ 2!

° ° ~

~ - ~ I

J

-6 >. "F.

~ ~ _.~

c

\

E_ =~

P . , O

O J

o

016 Communications of the ACM September 1984 Volume 27 Number 9

Special Section

1975 1976 1977
10] 2Q[30 [4Q 1Q [20 i 3QI 40 I IQ I 2Q 130 14Q

1978
1012o 13o I ,o

1979 1980
IQ I 2Q I 3Q] 4Q IQ 12Q 1 3O I =0

1600

rr

gJ

O

Z < lOOO- 3:

,, 800-

z 600--

400

Zl
Phase 1SDR

&
Entry TAEM, A&L

.I
Ascent AOA

I.
On-Orbit

Return To Launch
Site Abort (RTLS)

0 0
Vehicle Checkout RTLS

0
Entry TAEM, A&L
Redundancy Mg~.
Sequencing
Systems Mgt.

Z~ System Design Review (SDR)
0 Baseline Requirements

Document Release Date

1Q 12013O I =0 1Q [2Q [3Q 140

0
G-RTLS Fit.

0 Ascent, AOA Aborts Control
Displays

0 L
Subsystem Operating j
Pr°grams 0 /

On-Orbit

10120130140 lO 12o13o14o

y

1 0 1 2 0 1 3 0 1 4 0 1 0 1 2 0 1 3 0 1 4 a

FIGURE 3. STS-1 Flight Software Requirements Change Requests (CRs)

ware design optimization, it became obvious that the
only way to solve the problem was to rework the re-
quirements. This took two forms: deletion of functions
and reduction of execution rates. These items caused
changes in both the software architecture and the de-
tailed design.

Another factor that strongly influenced change activ-
ity was exposure of the software to the vehicle and
laboratory test environments where real hardware was
available, operational procedures were used, and flight
crews were training. In many cases, it was found that
the real hardware interfaces differed from those in the
requirements, operational procedures were not fully
supported, and additional or modified functions were
required to support the crew. Again these changes fed
back into both the architecture and detailed design.

Experience from the Approach and Landing Test
(ALT} program had led both NASA and IBM manage-
ment to anticipate these problems. A requirements
analysis group was formed to provide a systems engi-
neering interface between the requirements definition
and software implementation worlds and to effect an
understanding of the requirements of each. They would
be the primary people to identify requirements and de-
sign trade-offs and clearly communicate the implica-
tions of the trades to both worlds. This approach proved
to be effective and made it possible to accommodate the

changing requirements without significant cost or
schedule impacts.

REQUIREMENTS IMPLEMENTATION PLANNING
In establishing an initial implementation plan, several
software development and Shuttle program objectives
were considered, including the following:

1. Implement the most mature requirements first to
minimize rework.

2. Release software for verification/certification as
soon as possible for maximum exposure and testing.

3. Support certification of simulation/training facili-
ties.

4. Support Orbiter fabrication, checkout, and integra-
tion at Palmdale and the Kennedy Space Center.

Due to the size, complexity, and evolutionary nature
of the program, it was recognized early that the ideal
software development cycle (Figure 3) could not be
strictly applied and still satisfy the objectives. However,
an implementation approach was devised for STS-1,
which met the objectives by applying the ideal cycle to
small elements of the overall software package on an
iterative basis (Figure 4).

This approach was based on incremental releases.
The releases were first separated into flight phases or

September 1984 Volume 27 Number 9 Communications of the ACM 917

Special Section

1977 1 1978 I 1979 I 1980
S I O I N I D J I F I M I A I M I J I J I A I S I O I N I D J I F I M I A I M I J I J I A I S I O I N I D J I F I M I A I M I J I J I A
10,'4 12/5 2/6 3/6 5/4 6/5 7/5 9/4 12/11 2/5 3/19 5/21 7/30 10/16 12/18 2/5 3/18 7/8 STS- 1 • • • • • • • • • • • • • • • • • •

Software ECL PMD2 AOA I ENT | ENT STS-1 STS-I~ CY2 REL13 REL 14 REL 15 REL 16~PS1.2 PS3 PS4 PS5
Releases I I PMD3 FACI KSC UPD 1 FACI UPD

i i I ~ l | I i ,o.
I [I I T I i~R~' IE M°d'f'"t'°n' I [~°~"'t~°' I

E n t r'~,' ~ ~ ~ E ~ e2 " Update 3 (b E ill) E rltry
Entry C/L 1 Entry C/L 2 I~':~,TI Update 1 I T M I (cRdDRs) (304-305) (301-305l I (CRs/DRs)

! ~ ~c.., I I I I ', : , Ascent ~ Ascent Ascent OAscent
Update I (CRs/DRs) I (CRs/ORs) Ascent I (CRs)

C/L
(.OA) I I I I

Orbit

System
Management
{SM)

Vehicle
Checkout
(VCO)

Orbit
C/I 1

i
PBD

PMD1 G9 (CRs/DRs)
S9/P9

I 19131

I S I O I N I D J I F I M | A [M I
9/23 12/16
PS6 PS7/

(I) ~ { ' ~] ~ Orbit (I)Or bit
Orbit (CRs/ORs) |(CRs/DRs)
c/~2 I I

I I I

I (CRs) ~ (CRs/DRs) (CRs/ORs)
I

I I I I
vco ,I, vco (i) Update I(CRs) --£ Update 2(CRs) • (CRs/DRs)

(CRs) -- Denotes incorporation of Requirements Changes
(DRs) -- Denotes Incorpocation of Discrepancy Corrections

FIGURE 4. Interim Flight Software Releases

memory configuration, i.e., entry, ascent, and vehicle
checkout. The first drop for each release represented a
basic set of operational capabilities and provided a
structure for adding other capabilities on later drops.
The development of the full set of baseline capabilities
for each release culminated at a first-article configura-
tion inspection (FACI) point, which marked the begin-
ning of the verification effort for that release.

The STS-1 software development program has had 17
interim release drops in a 31-month period starting in
October 1977 (Figure 4). Although full software capabil-
ity was provided after the ninth release in December
1978, an additional eight releases of the software have
been necessary to accommodate the continued require-
ments changes and discrepancy correction activity in-
herent in large, complex, first-of-a-kind software sys-
tems.

This incremental release approach satisfied the origi-
nal objectives. The mature portions of the Orbital
Flight Test (OFT) software were those parts most com-
mon to the ALT program such as "entry through land-
ing" and "vehicle checkout." These were developed
first. Other parts were built and integrated into the
system incrementally until the final FACI release was
reached.

The second and third objectives were uniquely satis-
fied by the development approach. The software was
exposed in small increments to both verification and
field users. This allowed early identification of software
discrepancies and eased problem resolution. The soft-
ware was incrementally exposed to the simulators.
Thus, the simulator checkout was completed in an en-
vironment where the number of variables could be
controlled, thus easing problem isolation.

The last objective of supporting vehicle test was ac-
complished by phasing the vehicle-checkout function
development on the same schedule as that of the vehi-
cle fabrication and integration. Initial releases sup-
ported the vehicle fabrication test at Palmdale. Later
releases incorporated additional capabilities required to
support total system integration and test at Kennedy
Space Center.

FORMULATION OF DEVELOPMENT STANDARDS
The early formulation of development standards cov-
ered both design and implementation. Following an
across-the-board review, the standards were baselined.
Deviation from the baseline required management and
change control board approval. Compliance with all de-
velopment standards was checked during each design/
code inspection and a postdevelopment audit with de-
viations documented by discrepancy reports (DRs).
Here are seven subjects that are addressed by the de-
velopment standards:

• redundant computer operation/synchronization;

• data homogeneity;

• processor and I/O rates, priorities, and phasing;

• interprocess data protection;

• program structuring and language utilization;

• module/data naming conventions;

• design documentation and code commentary.

THE DESIGN AND IMPLEMENTATION PROCESS
The architectural foundation for the OFT flight soft-
ware (Figure 5) was the ALT system with six primary
features:

918 Communications of the ACM September 1984 Volume 27 Number 9

Special Section

Flight computer operating system (FCOS} to support re-
dundant computer operations/synchronization and the
basic functions of process management, I /O manage-
ment, and DPS configuration management. Also in-
cluded is the set of service macros (SVCs) for the soft-
ware interface to the FCOS and external hardware.

System control (SC) functions to support system initiali-
zation, memory overlay/loading, and DPS configuration
initialization.

User interface (UI) functions to support user input proc-
essing, output display/message generation, and applica-
tions process controls. A set of macros called the con-
trol segment grammar provides the capability to de-
velop standard application control logic and display/
keyboard interface structures.

Flight software system generation and maintenance fa-
cilities, including the HAL/S compiler, IBM AP-101 as-
sembler, linkage editor, program library management,
and mass memory build facilities.

Software Development Laboratory (SDL), including the
flight software system generation and maintenance fa-
cilities and the facilities to simulate environment and
vehicle subsystem operations with which the flight
software could be tested and debugged.

Basic GN&C entry, system management, and vehicle
checkout applications software.

In addition to the system foundation used from ALT,
the management and technical experience gained in
ALT also was beneficial. To successfully implement the

I lr '[1 Orbiier Ground
Subsystems Support
Hardware SYstems

/

\ \
\

\
\

O_

Orbiter
Avionics
Hardware

Ii Mass rl Kevb°ard il Other Memory Display GPC's
Units Units ICC

I ,I I /

I/O Management

FCOS Service Interface (SVC's)

Command Input
Processing

SYSTEM
CONTROL

I
USER INTERFACE

Operations Control

Output Message
Processing

Control Segment (OPS/SPEC)

APPLICATION
PROCESSES

m

FLIGHT COMPUTER OPERATING SYSTEM

/
/

/
/

E

r -

E
0

c-
O u
o,)

D-On-board software

FIGURE 5. Software Architecture

September 1984 Volume 27 Number 9 Communications of the ACM 919

Special Section

much more complex OFT flight software, a more disci-
plined and structured development approach was fol-
lowed (Figure 6). Increased emphasis was given in the
"front end" aspects of the development cycle, including
requirements definition, system design, standards defi-
nition, top-down development, and identification of de-
velopment tools requirements and the resultant tools
(Figures 7 and 8). Similarly, during implementation,
added emphasis in design/code reviews and testing
helped achieve the required software reliability within
customer schedules.

In addition to steps taken to participate in the re-
quirements definition and the development of an incre-
mental release strategy, a significant degree of planning
was accomplished relative to the design implementa-
tion process. This addressed both the implementation
and maintenance of the existing ALT system, and the
development of the top-level OFT design structure. Pro-
cedures for development of the design structure, modi-
fication enhancements of the base ALT system, and
implementation of new OFT functional and detail re-
quirements were put into place.

Very early in the development cycle, while the re-
quirements definition was in process, a small group of
the more experienced programmers (system design
team) designed the control segment structures for the
different memory configurations required for OFT. Si-
multaneously, the existing ALT system software
(FCOS/SC/UI) was installed in new OFT program li-
braries. It was checked out to ensure its use as a base to
implement modifications needed for OFT to reduce
size, improve reliability and performance, and extend
capabilities,

The design team developed top-level control segment
structures, which were implemented and tested with
ALT base system software. As the requirements defini-
tion process evolved, modifications were made to im-
plement more detail or lower level aspects of the struc-
tures. Where anticipated but undefined requirements
were known, "stubs" were implemented. Stubs enable
software linkage to proceed without execution, and
thus, testing can be continued. Throughout this evolu-
tionary process, the implemented structure was tested
on a continuing basis to ensure the overall system sta-

H AL/S I I" APlOl POD I
I Language I I And Support I

I Software /

~ Pr ogrammiog " ~ ~
Standards
Definition

;rt °ng r;a:~r~ i n g I

Development

Orbiter Avionics I I Orbiter Avionics I

Requirements/Formulation Definition

I System LVL A J Functional LVL B
R

I
I Software I I Software I
I Requirements I I Requirements I

Design ~ ~ Design
Definition ~ ~

Detail LVL C
Software

\
Requirements

Detail
Design
Definition

~ Design
Inspection

Lab (SDL) And
Requirements CPU/MEM
Definition Projq tion

Iso I Requirements I ~Document

Software Functional Inspection Detail
Design Design And Design
Spec. ~ Spec. CPU/MEM Spec.

Preliminary
Design
Review

Software Implementation

FIGURE 6. Fflight Software Requirements and Design

Critical
Design
Review

920 Contmunications of the ACM September 1984 Volume 27 Number 9

Special Section

FIGURE 7. Flight Code Generation

bility. Continued testing established a sound building-
block approach and also provided training valuable to
programmers for interfacing with the system and for
learning software implementation and configuration
control procedures.

When the definition of system (Level A) and func-
tional (Level B) requirements was accomplished and
baselined at system design reviews, the software func-
tional design was completed and documented. Major
elements were the memory size and CPU loading pro-
jections that were developed based on the overall sys-
tem structure that had been implemented and the an-
ticipated detail requirements. A preliminary design re-
view was held with NASA and associate contractors to
critique and approve the design. This established a
baseline for subsequent detailed requirements and de-
sign development.

As the detail (Level C} requirements and associated
design evolved, the development environment became
more production oriented with an increased number of
people involved. The design team was responsible for

the overview and consistency of all elements of the
detailed design. Memory and CPU projections were up-
dated on a continuing basis. This process generated a
detailed design containing a "code to" level of detail,
including module structure and interfaces, database
definition and organization, equations and algorithms,
I /O data tables and interprocess variable data protec-
tion. Upon completion of the detailed design for each
module, a formal design review was held with analysts
and programmers to assure compliance with require-
ments and standards, correctness, completeness, effi-
ciency, and adequacy of interfaces. Design inspections
were tracked during development and the results docu-
mented. When the detail design for all software was
completed, a critical design review was held with the
Shuttle community where the design was approved and
baselined for implementation.

The implementation phase was performed with the
same attitude toward understanding, completeness,
consistency, and overall planned system approach as
was done for the design phase. The preparation and

September 1984 Volume 27 Number 9 Communications of the ACM 921

Special Section

development testing of Orbiter flight code utilized the
same ground rules of top-down, structured develop-
ment. The resource of the HAL/S high-level language,
which is particularly suited for top-down structured
coding, was especially helpful during this phase. This
resource permitted coding the functional design of the
major elements of the flight software system. The
higher level modules were coded while leaving the
lower levels as undefined and {for the time) unneeded
stubs. This orderly procedure was very useful because
it allowed coding and testing of the higher level logic
and algorithms in the total development process. To
generate flight code, the production and test facilities of
the SDL are used (Figure 7). Use of a high-level lan-
guage coupled with improved development techniques
and tools doubled productivity over comparable Apollo
development processes.

Each coded module of software was subjected to a
code inspection with an audit team to ensure that the
code was consistent with requirements, design, and
standards, and efficient in terms of memory and CPU.
Each review process was tracked in the software devel-
opment plans, and review results were documented.
Upon completion of module coding, review, and unit
testing (Level 1), each module was scheduled for inclu-
sion into the baseline master system. This was a contin-

ual process since the master system was updated on a
three-week cycle. Postbuild testing was performed be-
fore release of the new master system to ensure contin-
ued stability. Build results were documented and
widely distributed to the project to provide visibility
into the status of the integration process and the master
system (Figure 8).

As a flight software release neared completion, a final
programming standards audit was performed. This au-
dit was conducted using both automated and manually
generated data and emphasized multicomputer redun-
dant set operations, interprocess variable data protec-
tion, overlap of data processing with I/O, process
schedu!ing and termination, and restricted instructions
and sequencing. The status and results of this audit
were presented at a FACI, which marked the comple-
tion of the baseline requirements implementation and
the start of formal verification.

AN INTEGRATED TEST APPROACH
The improved implementation methods and controls
used during the development process help to produce
software with fewer latent errors. However, assurance
that the software is error-free can be gained only by a
well-structured form of testing. Early in OFT, determi-
nation was made that an integrated test approach was

New
Source
Modules

New
Object
Modules

New
I I Master
I .~w~m | Source ~ Progr;
~ ~,-~.~ ~ Library Stand

 F-J I : Audit

I i . . j ~ ' New
I ~ Master AP

CEo; z; ' oh,
ion Edi

t I
I Approved I _1 ILOADab

B~ledi'/nRe~lease I -I ara, ,,er

lass
lemory
luild
:acility

| Release Patch i ~ wl Devel°pment , .

mmil
|rds

01

:or

1

"1 Software]
I Discrepancy
I Reports

INTEGRATION & VERIFICATION TESTING

r "~ SDLP=tl I- Te:t !
li:Lu __

t

MMU

~ _ _ _ =

APt01

Mgt / DPS Cnfg Mgt Est I/O

SVs Cnt / Process Mgt
m

Applications Interface

GN&C MFB VCO
• MFB

G1/6 G2 G3 G9 G8 $9 P9

FIGURE 8. Flight Software Integration

SM
MFB

S2

922 Communications of the ACM September 1984 Volume 27 Number 9

Special Section

required to control the testing process across the proj-
ect. Several goals were set forth to ensure a successful
test approach: establishment of documentation and con-
trol to ensure visibility into the testing process, estab-
lishment of test execution and documentation stan-
dards, and parallel test planning during the design
process. The key element of this test approach, how-
ever, was development of a test management approach
that emphasized a hierarchical ordering of develop-
ment tests that allowed for continual integration of pro-
gram parts as they were developed and a systematic
sequence of evaluation tests on the flight software sys-
tem (Figure 9).

During the development period, compilation units
were added to the master system via the system build
process, which was invoked cyclically. Parts of the
processing associated with each cyclic master system
update were tested to determine the preservation of the
software's basic capabilities on that particular master
system update. Also, more detailed tests were used to
determine the quantitative status of the new capabili-
ties that had completed testing. The former testing was
termed "regression testing"; the latter, "new capabilities
testing." All specified test plans were documented in an
integrated test plan that covered all phases of testing.

Level 1 Testing (Unit)
During the development activity, specific testing was
done to ensure that the mathematical equations and
logic paths provided the results expected. These algo-
rithms and logic paths were checked for accuracy and,
where possible, compared against results from external
sources and against the system design specification
(SDS). The testing activity occurred in parallel with
new capability testing but was accomplished by the
development programmer. The test results were docu-
mented by means of a unit test checklist.

Level 2 Testing (Functional)
The Level 2 facet of the development test activity was
similar to the Level 1 testing. However, the Level 1
testing described above was expanded to test modules
that interfaced with each other in the total functional
environment and that are required to satisfy a specific
user input command. It combined modules that by de-
sign operated in conjunction with each other and tested
them as a function against the SDS and the require-
ments. This activity was accomplished in parallel with
ongoing new capability testing. Test results were docu-
mented in development test reports.

Level 3 Testing (Subsystem)
Level 3 testing demonstrated the ability of a subsystem
to execute its nominal functions in a simplex flight
computer environment (e.g., fly an ascent trajectory or
perform self-test of part of the vehicle hardware). These
tests were the first real indicators of the software per-
formance as an integrated system. All facets of the ap-

Space Shuttle "Enterprise," as it flew during the Approach and
Landing Tests, provided beneficial technical and management
experience needed for the more disciplined and structured
development approach used in developing the more complex
Orbital Flight Test flight software.

plications programs from the integrity of the algorithms
to the interfaces with the system software were exer-
cised. Completion of the Level 3 tests was one of the
key milestones in the path to releasing a system for
verification and the field usage. The test results were
documented in development test reports.

Level 4 Testing (System)
Level 4 testing exercised control logic interfaces, opera-
tional sequence (OPS) transitions, mode-to-mode transi-
tions, specialist function (SPEC) operations, and display
processing in a multiple flight computer environment.
Inter- and intracomputer interfaces (overlays, data
transfers and timing, and process synchronization) were
tested to check the hardware and software interfaces in
the SDL environment. The test results were docu-
mented in the development test reports.

Level 5 Testing (Release Validation)
Prior to delivering the software to field users, the Level
4 tested end item was loaded into a hardware mass
memory and a system test was executed in one of the
NASA simulation/training facilities. This was to verify
that the delivered software would function in the most
realistic hardware environment available. The test re-
suits were presented with the delivery.

CONFIGURATION CONTROL
One of the most complicating factors that affected the
development of the Orbiter avionics software was the
extremely large number of people involved. This in-
cluded not only the programming staff but also those
involved in requirements definition, SDL development,
verification, and field support. Coupled together with
the previously mentioned high degree of requirements

September 1984 Volume 27 Number 9 Communications of the ACM 023

Special Section

Title SHUTTLE PRIMARY FLIGHT SOFTWARE IV & V
FAe,

7 7 - - OEVE,OPMENT
V n l i i u © ~ ' r ~

~ DELIVERY OF "~
S/WCOMP~
NENTSTO M A g i
TER SYSTEM J

LEVEL1
TESTING

LEVEL2
TESTING

I LEVEL3
TESTING

VOLUME 2 ITP

. -A (

VERI FICATION
I ̀= VOLUME 3 ITP

I Date [P a g e o f _

• SYSTEM INTERFACES
• MISSION PROFILE

l i EQUATIONS
PATHS
RANGE OF VALUES

• UNIT INTERFACES
• USER COMMANDS

• FUNCTIONAL INTERFACES
• MULTIPLE FUNCTIONS
• TIMING

LEVEL 4
TESTING

I LEVEL 5
TESTING

CONTINUOUS INTEGRATION
(POST BUILD, REGRESSION. & FLOOR RELEASE VALIDATION)

CI FRR
~ VALIDATION ~ plF

• MASS MEMORY UTILIZATION
• TAPE/LISTING VALIDATION
• SYSTEM LEVEL TEST

L E V E L 6 TIMING INTERFERENCE
TESTING DETAILED FUNCTIONAL TESTS

PERFORMANCE I

LEVEL 7 _j~e TESTING ACCEPTANCE TESTS
I

t' MISSION UNIQUE)
\ TESTING j

A (~ DELIVERY OF)
S/W SYSTEM TO
THE USERS &
VERIFICATION

(~ DELIVERY OF)
S/W SYSTEM TO
THE NASA

FIGURE 9. Levels of Testing

change, the incremental releases of early versions of
the software, and the overall size and complexity of the
software itself, a very complicated configuration man-
agement problem was created.

In order to gain control of this situation, an internal
control/coordination board structure was established.
This started with a requirements review board (RRB),
where the assessment of all requirements changes was
coordinated. A baselines control board (BCB) was estab-
lished to coordinate and control the system build/
release schedule planning and associated content con-
figuration definition/control. Eventually the structure
was expanded to include five different review/control
boards (Figure 10). Results, actions, and recommenda-
tions of these five independent boards were coordi-
nated through a project baselines control board, which
in turn interfaced with spacecraft software division
configuration control board (SSD CCB) and the orbiter
avionics software control board (OASCB).

Membership of the internal review boards included
representatives from all affected project areas. This
projectwide representation enhanced communication
among functional organizations and provided a mecha-

nism to achieve strict configuration control. Each board
that was responsible for assessing and scheduling
changes kept an up-to-date log of all recommendations
that were brought to the BCB for approval. After re-
view, all items that were approved were documented in
a project baseline report. Changes not authorized by
this report were not allowed on builds. Similarly, items
scheduled, but not supported, were analyzed very thor-
oughly.

Changes to approved configuration baselines, which
evolved from design changes, requirements change re-
quests (CRs), or software discrepancy reports (DRs),
were coordinated through the appropriate boards (inter-
nal) and ultimately approved by NASA. This structure
allowed an internal coordination of a total impact and
then provided one central, coordinated assessment to
the NASA control boards reflecting IBM's position or
changes. This applies to both application software base-
lines and support software.

Documentation of approved baselines was subse-
quently reported and monitored in project management
plans, orbiter management review monthly presenta-
tions, and Shuttle avionics software schedule baseline

924 Communications of the ACM September 1984 Volume 27 Number 9

Special Section

TitJe ONBOARD FLIGHT SOFTWARE SYSTEM

OASCB
Responsible For Flight
Software Change Control

• Primary
• Backup
a Engine Controller
• Etc

NASA

IBM

t
SSD CCB

Responsible For Assess-
ments And Recommendation
For Primary Software Changes

• Impacts
• schedules
• Delivery Contents

t-
Requirements Review B(

• Flight Software
Change Impact

• Flight Software
Change Schedu

• Requirements h
• NASA Control

Support Systems Reviav
• Support Softw~

Impact Assessn~
• Support Softws

Scheduling
• Support Softwa

Issues Review
,,, , ,,,,,,,,, ,

I Date 8120/80 I Page 47 of 95

i Orbiter
Avionics
Software
Control
Board

T&O BOARD !
• Special Patches
n MMU Element

Schedules
• Waiver Reviews
• DR Dispositions

Spacecraft
Software
Division
Change
Control
Board

FIGURE 10. Configuration Control Boards Structure

and planning data package. Audits to verify consistency
between approved baselines and reported baselines
were performed weekly by the project office.

SUMMARY
Since the software package is an integral and critical
part of the Shuttle systems, a development and testing
approach was employed that ensured that the software
met customer requirements, performed in accordance
with Shuttle operational requirements, and was deliv-
ered to users with min imum errors. In order to develop
and deliver a software system that met these goals, the
development organization addressed the following
areas:

• early involvement with software requirements gen-
eration,

• development of a reasonable requirements imple-
mentation plan,

• early identification of development standards,

• utilization of top-down, structured implementation
techniques,

• establishment of design and code reviews and au-
dits,

• establishment of an integrated test approach for the
entire development process, and

• configuration control of the incremental build and
integration of the evolving software system.

CR Categories and Subject Descriptors: C.4 [Performance of Sys-
tems]--reliability, availability, and serviceability; D.2.2 [Software Engi-
neering]: Tools and Techniques; D.2.5 [Software Engineering]: Testing
and Debugging; D.2.9 [Software Engineering]: Management--software
quality assurance; D,4.5 [Operating Systems]: Reliability; J.2 [Physical
Science and Engineering]--aerospace; K.6.3 [Management of Computing
and Information Systems]: Software Management--software develop-
ment, software maintenance

General Terms: Design, Management, Reliability, Verification
Additional Key Words and Phrases: avionics system, PASS, space

shuttle

Authors' Present Address: William A. Madden and Kyle Y. Rone, IBM,
Federal Systems Division, 1322 Space Park Drive, Houston, TX 77058.

Permission to reprint this article is granted by the Technical Directions
maga~'ine, a publication of the IBM Federal Systems Division.

September 1984 Volume 27 Number 9 Communications of the ACM 025

