
A Floating Point Divider for
RC Systems

Date: July 24, 2000
By: R. Jennell Rouse

Advisor: Dr. Clay Gloster

Outline

• An Overview of Floating Point Arithmetic
• IEEE Floating Point Formats
• Examples of Floating Point Division
• Examples of Floating Point Addition
• Implementation of a 32-bit Floating Point

Divider
• Conclusions

Motivation

• This design is a part of the N.C. State
R.A.R.E. project.

• R.A.R.E. stands for a Remote Adaptive
Computing Resource on the Internet.

• With R.A.R.E., applications can execute an
order of magnitude 10 times faster than on
typical desktop computers.

Motivation

• Many applications use floating point
division, hence there is a need to develop a
floating point divider for use in R.A.R.E.

• The circuit is modeled using the Very High
Speed Integrated Circuits Hardware
Description Language(VHDL).

• There is a need to design a floating point
divider for use in floating point operations.

Floating Point Numbers

• Floating point number representations allow
us to use real numbers on a computer.

• Floating point numbers consist of a sign,
exponent, mantissa, and base.

Floating Point Divider

• Floating point number representations allow us to
use real numbers on a computer

• Floating point numbers consist of a sign, mantissa,
base, and exponent
– +10.34 x 1032

– +1.034 x 1033

• Since each floating point number can be
represented an infinite number of ways, we
normalize the number.
– +1.034 x 1033

Floating Point Numbers
IEEE Single Precision

8 bits 23 bits1 bit

Total 32 bits
sign exponent mantissa

•Most computers support single (32-bit)
 precision formats
•Single precision format can express numbers
 from (-3.4 E 38 to 3.4 E 38)

Floating Point Addition
(Complex)

To add two floating point numbers we:
•Align exponents while adjusting the mantissa
of one operand
•Add resulting mantissas
•Compute the sign of the result based on the
sign and magnitude of the two operands
•Normalize the result

Floating Point Addition

Example: -1.25 x 102

 + +2.50 x 10-1

 -1.2475 x 102

Floating Point Addition
A = 0.500000
A = 3f000000
Sign A: = 0
Exponent A: = 01111110
Mantissa A: = 00000000000000000000000
Real Exponent = -1
Mantissa = 0

B = 0.500000
B = 3f000000
Sign B: = 0
Exponent B: = 01111110
Mantissa B: = 00000000000000000000000
Real Exponent = -1
Mantissa = 0

0.5 + 0.5 = ????
A + B = Q

Floating Point Addition

Q = 1.000000
Q = 3f800000
Sign Q: = 0
Exponent Q: = 01111111
Mantissa Q: = 00000000000000000000000
Real Exponent = 0
Mantissa = 0

0.5 + 0.5 = 1.0
A + B = Q

Floating Point Division

• To divide two floating point numbers we:
• Divide divisor mantissa from the dividend

mantissa
• Subtract the exponent of the divisor from

the dividend
• Compute the sign of the result based on the

sign of the two operands
• Normalize the result

Floating Point Division

Example: -1.25 x 10 2
divided by +2.50 x 10-1

 -3.125 x 102

Floating Point Division
A = 31.367
A = 41FAEF9E
Sign A: = 0
Exponent A: = 10000011
Mantissa A: = 11110101110111110011110
Real Exponent = 4
Mantissa = 8056734

B = -0.34
B = BEAE147B
Sign B: = 1
Exponent B: = 01111101
Mantissa B: = 01011100001010001111011
Real Exponent = -2
Mantissa = 0

31.367 / -0.34= ????
A + B = Q

Floating Point Division (Contd.)
Q = -92.255823529
Q = C2B88303
Sign Q: = 1
Exponent Q: = 10000101
Mantissa Q: = 01110001000001100000011
Real Exponent = 6
Mantissa = 3703555

31.367 / -0.34= ????
A + B =-92.255823529

Floating Point Divider Core

Clk
Reset

OpA OpB ENLENR
32 32

32

OpQ EnN

Floating Point Divider Core

Subtract
Exponent

Integer
Divider
Carry In Hidden Bit

Divide by
Zero Unit

238 823

Normalize Unit

8 25

Divisor Dividend

8 23
Quotient

Integer Divider

UMan
25

24
Din Vin

24

Clk
RESET

•The integer divider has a two 24 bit inputs,
 which are the mantissas.
•There is also a hidden CarryIn Bit into the
 integer divider.

Divider_24 x 25

Subtract Exponent

Clk
Reset

EnL EnR
ExpA ExpB

Sign_A

Sign_B

UExp Sign Run0

Divide by Zero Unit

R
e

Clk
R
e
s

Reset

EnRDivisor
Bits23

Zero
bit

EnN

Normalize Unit

Reset
Clk

UMan UExp

Result RunO

Zero

32

25 8

EnRun

Field Programmable Gate Array
FPGA

• We mapped the
floating point divider,
which was described
in VHDL, onto a
FPGA.

Conclusions
• The implementation of a floating point

division unit in an FPGA will facilitate the
dramatic speedup of applications which
utilize recursive floating point divisions.

• LU Decomposition utilizes forward and
backward substitution in order to solve a
system of simultaneous equations.

Conclusions (Cont.)

• For a system which has hundreds of
unknowns division operations are utilized
thousands of incidences.

• The implementation of a floating point
division for reconfigurable computing can
drastically speedup mathematical operations
such as LU Decomposition.

